
 ISSN: 0871-7869

 Development of a Web APP for the Assessment of
General Stack FRP Laminates Subjected to

Different Loading Conditions

F. Nunes; M. Garrido; J.R.Correia
- Janeiro de 2020 -

Relatório CERIS
DTC nº 5/2020

This work was funded by FCT – Fundação para a Ciência e a Tecnologia, I.P. within the framework of the

EcoComposite project (PTDC/ECI-EGC/29597/2017).

INSTITUTO SUPERIOR TÉCNICO

DEVELOPMENT OF A WEB APP FOR THE

ASSESSMENT OF GENERAL STACK FRP

LAMINATES SUBJECTED TO DIFFERENT LOADING

CONDITIONS

Authors FRANCISCO NUNES, MÁRIO GARRIDO, JOÃO RAMÔA CORREIA

Project ECOCOMPOSITE – Development of eco-efficient bio-composites for civil

engineering structural applications (PTDC/ECI-EGC/29597/2017)

Task 2. Multi-criteria optimization of composite layups

Report no. 2.1.

Date January 2020

i

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 OVERVIEW .. 1

1.2 MOTIVATION .. 1

1.3 METHODOLOGY ... 1

2 THEORETICAL BACKGROUND .. 3

2.1 MATERIALS ... 3

2.2 RULE OF MIXTURES ... 4

2.3 CLASSICAL LAMINATE THEORY (CLT) ... 5

2.4 HALPIN-TSAI FORMULATION .. 7

2.5 INITIAL FAILURE AND PROGRESSIVE FAILURE ANALYSIS .. 7

3 SOFTWARE DEVELOPMENT ... 9

3.1 BACK-END .. 9

3.2 FRONT-END .. 11

3.3 DATABASE MANAGEMENT ... 16

4 USER GUIDE ... 19

4.1 OVERVIEW .. 19

4.2 MATERIALS ... 19

4.3 LAMINATE .. 21

4.4 ANALYSIS ... 23

5 CONCLUSIONS .. 27

5.1 MAIN CONCLUSIONS ... 27

5.2 FUTURE DEVELOPMENTS .. 27

6 REFERENCES ... 29

APPENDIX – BACK-END SCRIPT .. 31

ii

LIST OF FIGURES

FIGURE 1 – DIFFERENT LEVELS OF ANALYSIS [1]. .. 4

FIGURE 2 – DASH APP EXAMPLES. ... 12

FIGURE 3 – DROPDOWN COMPONENT. .. 13

FIGURE 4 – SLIDER COMPONENT. .. 13

FIGURE 5 – INPUT COMPONENT .. 13

FIGURE 6 – CHECKBOXES COMPONENT. ... 14

FIGURE 7 – RADIOBOXES COMPONENT. ... 14

FIGURE 8 – DATE PICKER COMPONENT ... 14

FIGURE 9 – BUTTON COMPONENT .. 15

FIGURE 10 – UPLOAD FILE COMPONENT. .. 15

FIGURE 11 – PLOTLY GRAPH COMPONENT. ... 16

FIGURE 12 – DATA TABLE COMPONENT. .. 16

FIGURE 13 – WEB APPLICATION BANNER AND NAVIGATION TABS. ... 19

FIGURE 14 – MATERIAL SELECTION PANEL. ... 20

FIGURE 15 – NEW MATERIAL PAGE DIALOG. ... 20

FIGURE 16 – MATERIAL MANAGER DATA TABLE. ... 21

FIGURE 17 – LAMINATE INPUT TYPES AND HALPIN-TSAI FORMULATION OPTION. .. 21

FIGURE 18 – LAMINATE STACKING OPTIONS FOR SIMPLE MODE. .. 22

FIGURE 19 – LAMINATE STACKING OPTIONS FOR ADVANCED MODE. .. 22

FIGURE 20 – EXAMPLE OF LAMINA AND LAMINATE STIFFNESS RESULTS. .. 23

FIGURE 21 – LINEAR ANALYSIS INPUT AND RESULTS. ... 24

FIGURE 22 – ANALYSIS CHART FEATURES (TOGGLING CURVES AND HOVERING OVER DATA). .. 24

FIGURE 23 – FORCE-STRAIN PROGRESSIVE FAILURE PATH CHART (IN THIS ILLUSTRATIVE EXAMPLE M11-Κ1). ... 25

FIGURE 24 – FORCE-STRAIN PROGRESSIVE FAILURE PATH CHART, FAILURE INDEX CHART AND LAMINA DISCOUNT CHART (IN THIS ILLUSTRATIVE

EXAMPLE M11-Κ1). ... 25

1

1 INTRODUCTION

1.1 Overview

This report presents the development of a web-app for the assessment of general stack FRP laminates

subjected to different loading conditions using the rule of mixtures, the Classical Laminate Theory (CLT) and a

progressive failure analysis called the ‘ply discount method’. It comprises the following three main sections:

 theoretical background;

 app development;

 user guide.

In the first section, a thorough theoretical background is presented, describing the mathematical formulation

behind the development of the app. It covers all the topics included in the app which are (i) raw materials, (ii) rule

of mixtures, (iii) CLT, (iv) Halpin-Tsai formulation, (v) initial failure and (vi) progressive failure analysis. The

following section presents an overview of how the app was developed, covering the technologies, programming

languages and frameworks used to develop the back-end, the front-end and the database management of the

app. Finally, the last section provides detailed instructions and guidelines on how to use the app.

1.2 Motivation

There were three main motivations for the development of this web-app. The first was related to the need of

developing a script that would be comprehensive, easy to use and able to interact with other applications, such

as Excel or MATLAB, so as to enable its integrated use in the project’s optimization related tasks. As the main

goal of the project is to develop new bio-based resins to be incorporated in FRP composites, the suitability of

the aforementioned theoretical tools (rules of mixtures, CLT, etc.) needs to be assessed for laminates

incorporating such new resins. Accordingly, this web-app provides a simple and straightforward way of applying

such tools, the results of which can subsequently be experimentally validated. Lastly, another main objective

was to develop an app that could be used not only within the framework of the project, but also disseminated

over the scientific community. The requirements set prior to the development were that it should be user-friendly

and have an appealing design. It should also comprise a database of raw materials and laminates that can be

updated by users over time.

1.3 Methodology

The methodology for the development of the app was divided in four steps: development of the back-end,

development of the front-end, development of the database management framework and deployment to an

online server.

2

The development of the back-end scripts was made through the use of the Python 3 programming language

within the Spyder IDE (integrated development environment). Whenever possible, Object Oriented

Programming (OOP) was used, which basically treats all the elements as objects with different attributes and

functions that can be applied to themselves. A total of five objects (Python classes) were created: resin, fibre,

fabric, lamina and laminate, each one with its own features. This type of programming allows for a more readable

code and it is also easier to understand than function-based programming.

The front-end was developed using Dash by Plotly, a framework that allows to build fully interactive apps directly

in the browser with little knowledge of HTML and using only Python scripts.

The database management was carried out using Structured Query Language (SQL), within the PostgreSQL

framework and the Python library psycopg2. This library allows executing SQL code within three lines of code,

directly in the Python script by creating a connection, a cursor and an execution command.

Finally, the app was deployed to an online server provider called Heroku, which has a free-tier service that

allows for the app to be online 24/7, with a user-defined domain and enough computing power for production

purposes.

3

2 THEORETICAL BACKGROUND

2.1 Materials

Composite FRP laminates comprise two main constituent materials: fibres and resin. While the fibres provide

strength and stiffness along their direction, the polymeric resin provides support to the fibres maintaining them

in the same position, distributing the stresses uniformly across the composite lamina and protecting them from

the environmental agents. Other materials, such as fillers and additives may also be added to the resin matrix

to improve the manufacturing process, to improve/change specific properties (e.g. colour requirements, fire

reaction) or simply for cost reduction [1].

One of the types of fibre reinforcement most widely used in civil engineering and construction applications are

glass fibres (used in glass fibre reinforced polymer, or GFRP, products). However, other types of fibre

reinforcement (such as carbon fibres, CF) may also be used in some specific applications, mainly when higher

stiffness is required, such as in several structural strengthening applications. E-glass (electric glass) fibres are

the most commonly used in the production of FRP pultruded profiles, which in turn are the most common type

of FRP structural element used in construction. This is greatly due to the cost-effectiveness of the E-glass fibre

reinforcement. Other special types of glass fibres are available, such as S-glass (structural glass) fibres, which

are mainly limited to aerospace composites as their cost is significantly higher than E-glass. All glass fibres

present high electrical resistivity, namely when comparing to carbon fibres. Carbon fibres are stiffer than glass

fibres, but are also more expensive and electrically conductive. There are several types of carbon fibres

available in the market, such as the standard modulus (SM) type, which is the most commonly used across

most applications. Ultra-high modulus (UHM) carbon fibres are considerably stiffer than the standard modulus

ones [1], but are significantly costlier.

The polymeric resins most often used in the production of FRP composites are unsaturated polyester, vinyl

ester and epoxy. Unsaturated polyester resins are a very cost-effective solution as they are the most

economical, are easily processed and present reasonably good mechanical properties [2]. Epoxy on the other

hand is the most expensive polymeric matrix. It presents very high mechanical properties, durability and low

shrinkage, namely when compared with unsaturated polyester. They are thus mainly used in carbon fibre

reinforced polymer (CFRP) composites. Vinyl ester results from the esterification of epoxy groups with acrylic

or methacrylic acids and presents intermediate characteristics relative to epoxy and unsaturated polyester

resins; namely, it presents a reasonable balance between durability, mechanical properties, ease of processing

and cost [1].

The relatively high environmental footprint of conventional oil-based resins together with their obvious

dependency from non-renewable resources have led manufacturers to revise their production materials to more

sustainable options. The analysis of the product lifecycle is pushing these manufacturers away from the oil-and-

4

gas and back to renewable resources, such as plants and biomass. However, most of these efforts are still

insufficient, with the incorporation rates of bio-based feedstock typically being lower than 50% in the final

products available in the market. Nonetheless, bio-based resins are then emerging as a sustainable alternative

to traditional oil-based resins. One of the biggest challenges for the production of structural elements with bio-

based resins is the cost-effectiveness of such resins (current products are still expensive) and obviously the

need to assess their functional efficiency (e.g., relative to their stiffness, strength and durability in harsh

environments) in comparison with conventional resins. Another relevant aspect is the need to understand in

depth the interactions between bio-based resin matrices and reinforcing fibres aiming at developing high

performance bio-composites.

In the following sub-sections, one will go through the process of computing the properties of a composite

laminate based on its constituent materials using the rule of mixtures, the CLT and a progressive failure analysis.

2.2 Rule of mixtures

FRP structures might be analysed at four different scales (Figure 1): (i) micro – at the material (fibre and matrix)

level and the interaction between the two, (ii) lamina – considering a given fibre volume and orientation,

(iii) laminate – considering a stack of laminae with different orientations, thicknesses or even reinforcement, and

(iv) structure – considering the full section of the laminates and the full-section equivalent properties. In the

scope of this report, one is mostly concerned with the lamina and laminate levels.

Figure 1 – Different levels of analysis [1].

Since both the fibres and the resin are assumed to be isotropic, the following set of equations show how the

shear modulus (G) and the shear strength (τ) are obtained from the remaining properties (elastic modulus, E,

Poisson ratio, ν, and axial strength, σ).

𝐺 =
𝐸

2(1 + 𝜈)
(1)

𝜏 =
𝜎

√3
(2)

At the lamina level, knowing the isotropic properties of the resin and the fibre reinforcement, one may use the

rule of mixtures [1] to define homogeneous equivalent properties for the whole lamina (often referred to as

engineering constants, due to the orthotropic behaviour that characterises FRP), such as the longitudinal elastic

modulus (EL), the transverse elastic modulus (ET), the shear modulus (GLT) and the Poisson’s ratios (major, νLT,

and minor, νTL). The following set of equations defines all the mentioned properties,

𝐸𝐿 = 𝑣𝑓𝐸𝑓 + 𝑣𝑚𝐸𝑚 (3)

5

1

𝐸𝑇
= 𝑣𝑓

1

𝐸𝑓
+ 𝑣𝑚

1

𝐸𝑚
(4)

1

𝐺𝐿𝑇
= 𝑣𝑓

1

𝐺𝑓
+ 𝑣𝑚

1

𝐺𝑚
(5)

𝜈𝐿𝑇 = 𝑣𝑓𝜈𝑓 + 𝑣𝑚𝜈𝑚 (6)

𝜈𝐿𝑇𝐸𝑇 = 𝜈𝑇𝐿𝐸𝐿 (7)

in which Ef and Gf are the fibre elastic and shear moduli, Em and Gm are the resin elastic and shear moduli, νf

and νm are the fibre and resin Poisson’s ratios and vf and vm are the fibre and resin volume fractions. The

following equation provides the relation between the thickness (t in mm) of the lamina and the fibre volume

fraction for a given areal weight of the fibre mats or fabrics.

𝑡 =
𝑚𝑓

𝜌𝑓𝑣𝑓
× 103 (8)

In the above equation mf is the areal weight of the fibres, ρf is the fibre density and vf is the fibre volume.

2.3 Classical Laminate Theory (CLT)

With a given laminae stacking sequence, the resulting laminate’s equivalent properties can be estimated using

the Classical Laminate Theory (CLT) [1]. One should note that, due to the through-thickness heterogeneity, the

axial and flexural stiffness may differ widely and thus calculations often address the laminate stiffness matrix

rather than the engineering constants. The laminate stiffness matrix is usually defined as the A-B-D (6×6) matrix,

in which the A, B and D (sub-)matrices correspond respectively to the axial, coupling and flexural stiffness. For

symmetric stacking sequences, the B matrix is null and the axial and flexural behaviours might be addressed

separately. First, the actual stiffness of the lamina is computed relatively to the longitudinal direction of the

laminate.

𝑄𝐿𝑇 = [

𝑄𝑥𝑥 𝑄𝑥𝑦 0

𝑄𝑦𝑥 𝑄𝑦𝑦 0

0 0 𝑄𝑠𝑠

] =

[

𝐸𝐿
1 − 𝜈𝐿𝑇𝜈𝑇𝐿

𝜈𝑇𝐿𝐸𝐿
1 − 𝜈𝐿𝑇𝜈𝑇𝐿

0

𝜈𝐿𝑇𝐸𝑇
1 − 𝜈𝐿𝑇𝜈𝑇𝐿

𝐸𝑇
1 − 𝜈𝐿𝑇𝜈𝑇𝐿

0

0 0 𝐺𝐿𝑇]

(9)

Next, according to the angle of the fibre direction () and using the appropriate transformation matrix, the

stiffness of the lamina is converted from the orientation of the lamina to the orientation of the laminate. The

compliance matrix (Sij) is then computed by inverting the lamina oriented stiffness matrix (Qij).

{

𝑄11
𝑄22
𝑄12
𝑄66
𝑄16
𝑄26}

=

[

cos4 𝜃 sin4 𝜃 2 cos2 𝜃 sin2 𝜃 4 cos2 𝜃 sin2 𝜃
sin4 𝜃 cos4 𝜃 2 cos2 𝜃 sin2 𝜃 4 cos2 𝜃 sin2 𝜃

cos2 𝜃 sin2 𝜃 cos2 𝜃 sin2 𝜃 cos4 𝜃 + sin4 𝜃 −4 cos2 𝜃 sin2 𝜃
cos2 𝜃 sin2 𝜃 cos2 𝜃 sin2 𝜃 −2 cos2 𝜃 sin2 𝜃 (cos2 𝜃 + sin2 𝜃)2

cos3 𝜃 sin 𝜃 − cos 𝜃 sin3 𝜃 cos 𝜃 sin3 𝜃 − cos3 𝜃 sin 𝜃 2(cos 𝜃 sin3 𝜃 − cos3 𝜃 sin 𝜃)

cos 𝜃 sin3 𝜃 − cos3 𝜃 sin 𝜃 cos3 𝜃 sin 𝜃 − cos 𝜃 sin3 𝜃 2(cos3 𝜃 sin 𝜃 − cos 𝜃 sin3 𝜃)]

{

𝑄𝑥𝑥
𝑄𝑦𝑦
𝑄𝑥𝑦
𝑄𝑠𝑠}

(10)

6

𝑄𝑖𝑗 = [

𝑄11 𝑄12 𝑄16
𝑄21 𝑄22 𝑄26
𝑄61 𝑄62 𝑄66

] (11)

𝑆𝑖𝑗 = 𝑄𝑖𝑗
−1 (12)

𝐸1 =
1

𝑆11
(13)

𝜈12 = −
𝑆21
𝑆11

(14)

𝜈61 =
𝑆61
𝑆11

(15)

𝐸2 =
1

𝑆22
(16)

𝜈21 = −
𝑆12
𝑆22

(17)

𝜈62 =
𝑆62
𝑆22

(18)

𝐸6 =
1

𝑆66
(19)

𝜈16 =
𝑆16
𝑆66

(20)

𝜈26 =
𝑆26
𝑆66

(21)

At the laminate level, one is mostly concerned in obtaining the A-B-D matrix, which relates the strain array of

the laminate with the force per unit width array [1]. It may be computed as follows:

{

𝑁1
𝑁2
𝑁6
𝑀1

𝑀2

𝑀6}

=

[

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴21 𝐴22 𝐴26 𝐵21 𝐵22 𝐵26
𝐴61 𝐴62 𝐴66 𝐵61 𝐵62 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵21 𝐵22 𝐵26 𝐷21 𝐷22 𝐷26
𝐵61 𝐵62 𝐵22 𝐷61 𝐷62 𝐷66]

{

𝜀1
0

𝜀2
0

𝜀6
0

𝜅1
𝜅2
𝜅6}

(22)

𝐴𝑖𝑗 =∑𝑄𝑖𝑗
𝑘 (𝑧𝑘 − 𝑧𝑘−1)

𝑛

𝑘=1

=∑𝑄𝑖𝑗
𝑘 ℎ𝑘

𝑛

𝑘=1

(23)

𝐵𝑖𝑗 =
1

2
∑𝑄𝑖𝑗

𝑘 (𝑧𝑘
2 − 𝑧𝑘−1

2) = ∑𝑄𝑖𝑗
𝑘 (−𝑧�̅�ℎ𝑘)

𝑛

𝑘=1

𝑛

𝑘=1

(24)

𝐷𝑖𝑗 =
1

3
∑𝑄𝑖𝑗

𝑘 (𝑧𝑘
3 − 𝑧𝑘−1

3)

𝑛

𝑘=1

=∑𝑄𝑖𝑗
𝑘 (ℎ𝑘𝑧�̅�

2 +
ℎ𝑘
3

12
)

𝑛

𝑘=1

(25)

7

2.4 Halpin-Tsai formulation

The Halpin-Tsai equations [3,4] are said to be more accurate in the determination of the transverse and shear

moduli than the CLT. Thus, these equations may be included in the analyses by overwriting the corresponding

values that result from CLT. The Halpin-Tsai formulation consists on the application of the following equations,

𝑀

𝑀𝑚

=
1 + 𝜉𝜂𝑣𝑓

1 − 𝜂𝑣𝑓
(26)

𝜂 =
(
𝑀𝑓
𝑀𝑚

− 1)

(
𝑀𝑓
𝑀𝑚

− 𝜉)

(27)

in which M is the property being analysed, the subscripts c, m and f stand for composite, matrix and fibre,

respectively, vf is the fibre volume and ξ is an empirical value which corresponds to a measure of reinforcement

of the composite material, dependent on the fibre geometry and loading. According to the specific bibliography,

one may adopt the value of ξ = 2.0 for the transverse elastic modulus [4] and ξ = 1.0 for the shear modulus [3].

2.5 Initial failure and progressive failure analysis

To analyse the failure behaviour of the laminate, one should first define an appropriate initial failure index, which

is a parameter that accounts for the current stress state and yields a value between 0.0 and 1.0 to indicate how

much more loading the laminate can sustain before reaching the strength of the limiting lamina (initial failure).

Some of the most widely used failure initiation criteria are the maximum stress index or the maximum strain

index [1], the Tsai-Hill index [5] and the Hashin damage initiation index [6,7]. In this report, one will only address

the failure indices used in the web-app, which are the maximum stress index and the Tsai-Hill index.

The first step of a failure analysis is computing the stresses in each lamina due to a given loading condition

(using the ABD matrix shown in section 2.3) and transforming those stresses from the laminate orientation to

the lamina orientation using the transformation matrix shown below.

{

𝜎𝑥
𝜎𝑦
𝜎𝑠
} = [

cos2 𝜃 sin2 𝜃 2 cos 𝜃 sin 𝜃
sin2 𝜃 cos2 𝜃 −2 cos 𝜃 sin 𝜃

− cos 𝜃 sin 𝜃 cos 𝜃 sin 𝜃 cos2 𝜃 − sin2 𝜃

] {

𝜎1
𝜎2
𝜎6
} (28)

With the stresses oriented in the direction of each lamina, the maximum stress index, as the name implies,

consists of computing a ratio between the given stress and the corresponding strength. The maximum stress

index of each lamina-stress pair is assumed to be the maximum stress index of the laminate.

Regarding the Tsai-Hill index, it takes into account all the stresses and strength values in its formulation, which

is computed in each lamina according to the following equation.

𝐼𝐹
𝑇𝑠𝑎𝑖−𝐻𝑖𝑙𝑙 =

𝜎𝑥
2

𝜎𝑢,𝑥
2
−
𝜎𝑥𝜎𝑦

𝜎𝑢,𝑥
2

+
𝜎𝑦
2

𝜎𝑢,𝑦
2
+
𝜎𝑠
2

𝜎𝑢,𝑠
2

(29)

8

The progressive failure analysis consists of applying the ply discount method to the laminate stacking and

evaluating the respective load-strain path. This method consists of three main steps. The first one is to

incrementally increase the load until reaching the limit of the failure index (1.0) in one or more laminae. Next, a

new ABD matrix is computed (for the laminate without the discounted laminae that reached the failure index of

1.0). Finally, the force array is calculated based of the strain state of the previous step, using the new ABD

matrix. These three steps are looped until all the laminae are discounted from the analysis and the force array

reaches 0. It is worth mentioning that this approach involves the simplifying assumption that there is no post-

failure capacity after a given lamina attains the failure index.

9

3 SOFTWARE DEVELOPMENT

3.1 Back-end

The back-end of the web application was developed using the Python 3 programming language [8] and

importing some useful libraries, such as NumPy [9] or Pandas [10]. The programming scripts were developed

using Object Oriented Programming (OOP) whenever possible, defining the relevant object classes, attributes

and functions that would allow for a straightforward and readable implementation of the problem. All the objects,

functions and other relevant snippets of code are highlighted in grey colour with light grey background.

The back-end coding script is presented in the Appendix.

3.1.1 Materials

The first step of the development was the definition of the raw materials: Resin and Fibre. For each material,

the developer needs to specify the longitudinal elastic modulus (E), the Poisson’s ratio and the strength as

mandatory arguments. The density argument is optional and if not specified it is assumed to be 1200 kg/m3 for

the resin and 2500 kg/m3 for the fibre.

Afterwards, one defines the Fabric object, which basically consists of a layer of fibres with orthogonal

orientations weighted in a certain proportion. The arguments of the class are the fibre that it is made of the areal

weight in the longitudinal direction and the areal weight in the transverse direction (in g/m2). If the Fabric object

is used in a lamina instead of a Fibre object, the thickness is computed automatically according to the rule of

mixtures (section 2.2).

3.1.2 Lamina

The Lamina object was defined taking into account the following arguments: resin, fibre, volume, angle (with

the longitudinal direction of the laminate) and the Halpin-Tsai Boolean variable (set to False by default). A

certain number of attributes were set in order to fully define the Lamina object. The interested reader should

check the Appendix for the detailed code snippet. Also, three functions with different goals were defined and

are addressed in the following paragraph.

The compute_moduli() function uses the properties from the resin and the fibre materials and computes the

longitudinal, transverse and shear elastic moduli of the lamina, as well as the Poisson’s ratios according to the

specified fibre volume by applying the rule of mixtures. The Halpin-Tsai equations (section 2.4) are used for the

transverse and shear elastic moduli if the Boolean attribute self.halpin_tsai is set to True. The

compute_matrices() function transforms the elastic properties of the lamina into the laminate longitudinal

orientation angle using the appropriate transformation matrix.

10

3.1.3 Laminate

The Laminate object is instantiated without passing in any arguments. All of the analysis is done by the

corresponding object functions. The add_lamina() function adds a single lamina to the Laminate object from

the bottom up. It takes in the Lamina object to be passed onto the laminate, the thickness of that given lamina

and the Boolean variable compute_properties, which is set to True by default. If the compute_properties

argument is set to False, the script will not compute the laminate properties after adding that particular lamina.

The developer should be aware of the fact that, while using such approach significantly minimizes the

computational times spent in the laminate instantiation, the last lamina object that is added to the laminate

should always have compute_properties set to True, otherwise, all the stiffness properties of the laminate

will not be correct.

Similarly, the add_multiple_laminae() function adds a set of laminae to the laminate rather than a single

one. It takes in the following parameters: resin, fibre, laminae thickness list, laminae angle list and the Halpin-

Tsai Boolean variable.

The compute_ABD_matrix() and the compute_effective_moduli() do not take in any arguments and, as

their names state, they are used to compute the laminate ABD matrix and the effective elastic properties under

pure tension and simple bending.

The compute_stress_state() function takes in the force per unit width parameters (N11, N22, N66, M11, M22

and M66) and computes the corresponding stress state of the laminate. The output consists of a Pandas

DataFrame with results in the bottom and top faces of each lamina with the following parameters (columns):

 Height (m);

 Angle of the lamina (º);

 Strain 11 (m/m);

 Strain 22 (m/m);

 Strain 66 (m/m);

 Stress 11 (MPa);

 Stress 22 (MPa);

 Stress 66 (MPa);

 Stress L (MPa);

 Stress T (MPa);

 Stress LT (MPa);

 Maximum stress;

 Tsai-Hill index.

These DataFrame results are then used is subsequent functions and for building charts in the front-end script

of the web-app. The compute_maximum_stress_index() and compute_tsai_hill_index() functions check

what is the maximum failure index in the laminate for a given stress state. The functions take in only the

DataFrame computed in compute_stress_state().

11

The get_max_force() function computes the failure initiation force of the laminate (i.e., when the considered

failure index reaches 1.0). It is only designed to analyse a single force component (either N11, N22, N66, M11, M22

or M66) and it takes in the failure index target value (default is 1.0), the force component (the default is N11), the

force sign (the default is plus but it can be set to minus) the type (Tsai-Hill or Maximum stress) and the tolerance

of the error (default is 10-3).

The get_max_force_list_factor() presents a similar scope to that of the get_max_force() but it computes

the maximum factor for a proportional force array rather than a single component. It takes in the force array as

a list, the index target value (default is 1.0), the index type (Tsai-Hill or Maximum stress) and the tolerance of

the error (default is 10-3).

3.1.4 Other useful functions

This section presents other useful functions that may be used in the analysis of laminates. The

compute_load_strain_path() function takes in the Laminate object, the force component to be analysed

and the failure index type, and yields the force-strain path of that laminate object up to failure. Each step consists

basically of a loop of procedures to account for the stress states of the laminate up to the point when all the

laminae reach failure. The Laminate object starts off the unloaded stress state. Next the get_max_force()

function is used to compute the maximum force that the laminate will attain with the current stack configuration.

Then, the lamina or laminae that reach the failure index are discounted from the analysis. For that purpose, and

since removing the lamina from the laminate would be a complex programming task, the stiffness of the laminae

to be removed are multiplied by a factor of 10-6, making their contribution negligible in the analysis. Finally, the

get_max_force() function is used for the new stacking configuration. This function also outputs, for each step,

several other parameters to be used in the front-end charts, namely:

 A Boolean list to check if a given lamina is already removed from the analysis or not;

 A list of the laminae bottom and top face heights relatively to the bottom face of the laminate;

 The maximum stress index along the height of the laminate;

 The Tsai-Hill index along the height of the laminate.

3.2 Front-end

The front-end of the web application was entirely developed using the Dash by Plotly [14] framework and

Bootstrap 4 style sheets. Dash is a web framework that allows developers to create seamless interaction

between user input data and output text, charts or tables. Dash abstracts away all of the technologies and

protocols that are required to build an interactive web-based application. After being ready, the app can be

deployed to an online server and then shared through a URL. Since Dash apps are viewed in the web browser,

Dash is inherently cross-platform and mobile ready. In Figure 2 one may find some examples available in the

Dash gallery webpage.

12

Figure 2 – Dash app examples.

Dash is built using Plotly, which is an open source graphing library that allows developing complex JavaScript

interactive charts using only pure Python, R or MATLAB code. The charts’ features include hovering over data,

zoom-in, zoom-out, pan, download chart as “.png”, live update, animations, among others [14]. Its chart types

13

range from scientific to statistical, financial or choropleth maps, 2D or 3D with extensive customisation

possibilities to fit the needs of the developer and the users.

Figure 3 to Figure 12 show the main Dash app components with a code snippet implementation example. Dash

apps basically consist of two parts: “Layout” and “Callbacks”. Layout, as its name implies, is the part in which

the developer sets the “skeleton” of the app regarding its graphic design. All the components and HTML that

will be used in the app are defined in this part. Callbacks is the part in which the developer sets how the app

reacts to user interactivity. This may be through the update of charts, data tables or simply HTML text.

Figure 3 – Dropdown component.

Figure 4 – Slider component.

Figure 5 – Input component

14

Figure 6 – Checkboxes component.

Figure 7 – Radioboxes component.

Figure 8 – Date picker component

15

Figure 9 – Button component

Figure 10 – Upload file component.

16

Figure 11 – Plotly graph component.

Figure 12 – Data table component.

Regarding the Dash app that was developed within the framework of the EcoComposite project and which is

the scope of this report, one will not get into much detail as it presents a rather complex implementation that is

beyond the scope of this report. It features over 1600 lines of code with URL mapping, hidden elements, stored

data between callbacks and thus it would require the reader to be fully into the Dash framework for

understanding those concepts1.

3.3 Database management

The database management was developed using Structured Query Language or SQL (using the PostgreSQL

framework) and a Python library psycopg2. Two different SQL tables were defined: Fibres and Resin. For

each table, 8 different columns were set:

 id – unique labelling for each resin/fibre (type integer sequential);

 name – name of the resin/fibre for easier identification (type text);

 elasticmodulus – isotropic elastic modulus in GPa (type numeric);

 poisson – Poisson’s ratio (type numeric);

 strength – isotropic tensile strength in MPa (type numeric);

 density – density of the material in kg/m3 (type numeric).

1 The interested reader may contact Francisco Nunes (francisco.nunes@tecnico.ulisboa.pt) or Mário Garrido
(mario.garrido@tecnico.ulisboa.pt) for further information on the Dash app development.

17

 author – username of the author who created the material (type text);

 datecreated – the date in which the material was created (type date).

By using the psycopg2 library the developer is able to use SQL commands and interact with the database by

using an additional Python script. One defined several functions to accomplish all the desired interaction

between the user and the SQL database. Each python function is briefly described next and the SQL code

snippet is shown below.

The insert_new_resin() and insert_new_fibre() functions insert a new resin material in the Resins and

Fibres tables, respectively. They take in the name, the elastic modulus, the Poisson’s ratio, the strength, the

density, and the author arguments. The id is computed automatically since it is a sequential variable and the

date created is filled using the NOW() SQL function.

execute('INSERT INTO "Resins" (name, elasticmodulus, poisson, strength, density,
author, datecreated) VALUES (%s,%s,%s,%s,%s,%s, NOW())', (name, elastic_modulus,
poisson, strength, density, author)

execute('INSERT INTO "Fibres" (name, elasticmodulus, poisson, strength, density,
author, datecreated) VALUES (%s,%s,%s,%s,%s,%s, NOW())', (name, elastic_modulus,
poisson, strength, density, author))

The read_all_resins() and read_all_fibres() functions read all the resins or fibres to compute the

material manager tables of the Dash app (presented ahead in Figure 16). They are also used on the dropdown

resin selector of the Dash app (presented ahead in Figure 14).

execute('SELECT * FROM "Resins";')

execute('SELECT * FROM "Fibres";')

The delete_resin() and delete_fibre() functions take in the argument id and delete the corresponding

resin or fibre from the Resins or Fibres tables, respectively.

execute('DELETE FROM "Resins" WHERE Id = {};'.format(Id))

execute('DELETE FROM "Fibres" WHERE Id = {};'.format(Id))

18

19

4 USER GUIDE

4.1 Overview

The web application interface was named LAYUP | FRP Laminate Analysis. As seen in Figure 13, the LAYUP

application is structured in three different tabs:

 Materials;

 Laminate;

 Analysis.

The Materials tab allows choosing the raw materials that compose the laminate (resin and fibres) to be analysed.

It also comprises the options to add new materials with given properties and to enter the material manager for

both the resin and fibre.

The Laminate tab is where the stacking sequence and fibre volume are provided. From the raw materials defined

in the former tab, the user is able to define a build-up sequence of laminae with the desired properties.

Finally, the user is prompted with the Analysis tab. Herein, for a given force array, the user is allowed to analyse

the stresses along the laminate thickness as well as the corresponding failure indices. Moreover, the

progressive failure of the given laminate is addressed using the ply discount method described earlier in section

2.5.

Figure 13 – Web application banner and navigation tabs.

4.2 Materials

As mentioned, the Materials tab allows choosing the resin and fibres that compose the laminate to be analysed.

Each material is considered to be isotropic and has four different properties that are used in the CLT and

progressive failure analyses:

 Elastic modulus;

20

 Poisson’s ratio;

 Strength;

 Density.

The materials may be chosen from the database by selecting in the dropdown bar or the user may also fill in

the properties, for user-defined materials (Figure 14).

Figure 14 – Material selection panel.

Upon clicking the Add Material button, , the user is prompted with a page that allows saving a new material

to the database (Figure 15). The user should provide information for all available fields to save the new material.

This new material can be used in later analyses carried out by each of the app’s users.

Figure 15 – New material page dialog.

The Material Manager button, , prompts the user with the database of all resins and fibres stored in the app

(Figure 16). Here one can see the list of all the properties for each resin and fibre and also delete materials. It

21

should be highlighted that the deletion of a given material affects all users of the application and not just the

current user. The Material Manager should be used with caution and mostly for information purposes. This issue

should be fixed in a future update of the app in which a user-based specific login will be developed and

implemented, so that each user has its own credentials and permissions. After choosing the materials desired

for the composite analysis, the user should navigate to the Laminate tab.

Figure 16 – Material Manager data table.

4.3 Laminate

The Laminate tab prompts the user with two different types of data input: Simple and Advanced. Also, the user

is allowed to choose between a basic rule of mixtures approach for the definition of all lamina properties or to

use the Halpin-Tsai equations (see section 2.4) for the definition of the transverse elastic and shear moduli

(Figure 17).

Figure 17 – Laminate input types and Halpin-Tsai formulation option.

4.3.1 Simple mode

The Simple mode consists of only four fields for data input (Figure 18):

 Fibre volume: the ratio between the volume of fibres to the volume of the entire laminate;

 Lamina thickness: the thickness of each lamina (all laminae are considered to be of equal thickness);

 Stack orientation sequence: the angle orientation of each lamina w.r.t. the laminate longitudinal axis.

The user should input each angle separated by a slash (/). The stacking is considered to be from the

bottom up;

 Symmetry options: the user must choose between No symmetry – the stacking is considered to be

exactly the one given in the Stack orientation sequence field; Symmetrical (Even) – the stacking is

22

considered to be symmetrical, replicating all the laminae orientations in the mirrored sequence;

Symmetrical (Odd) – the stacking is considered to be symmetrical, replicating all the laminae

orientations in the mirrored sequence except for the last lamina in the user-input stacking sequence

(which will become the middle lamina of the resulting laminate).

Figure 18 – Laminate stacking options for simple mode.

4.3.2 Advanced mode

The Advanced mode should be used instead of the Simple mode if the user is required to use bidirectional

laminae in the analysis and if it has access to the areal weight of each layer of fibre reinforcement. The user

should fill in the cells of the data table presented in Figure 19 with the name, orientation, longitudinal and

transverse areal weights of each lamina. Their thickness is then computed automatically according to the

formulation presented in section 2.2. Once again, the stacking is considered to be from the bottom up (the first

row of the data table corresponds to the bottommost row of the laminate and so on) and the symmetry options

are the same as in the simple mode (section 4.3.1). The table is complemented with three buttons below. The

first, , adds a new layer, the second, , recalculates all the values if the fibre volume has changed, and

the third, , clears the whole table.

Figure 19 – Laminate stacking options for advanced mode.

23

4.3.3 Laminate stiffness results

After choosing the appropriate mode of analysis and filling in all the required input fields, the user obtains the

effective stiffness properties of the laminae and the laminate (Figure 20). On the top left the lamina elastic

moduli and Poisson’s ratios are shown. On the top right the user can obtain the effective tensile and flexural

elastic properties of the laminate. Below these, the laminate ABD matrix is given.

Figure 20 – Example of lamina and laminate stiffness results.

4.4 Analysis

The Analysis tab can only provide results if the previous tabs (Materials and Laminate) are duly filled.

4.4.1 Linear analysis

Firstly, a linear analysis panel is shown (Figure 21). The user can input the six different force values per unit

width (N11, N22, N66, M11, M22 and M66) and obtain the corresponding stresses across the thickness of the

laminate (S11, S22 and S66), as well as the failure indices (Maximum stress and Tsai-Hill Index).

Upon hovering over the points on the charts the user is presented with the value of the stress for that given

height (i.e., position along the thickness). The stress and index values are computed on the top and bottom of

each lamina. Also, upon clicking on the legend, the user can toggle on or off one or the other curves for a clearer

exhibition of the results (Figure 22). Also using the tool bar above the charts, the user may zoom in and out,

pan and export an image file (in PNG format).

24

Figure 21 – Linear analysis input and results.

Figure 22 – Analysis chart features (toggling curves and hovering over data).

4.4.2 Failure analysis

Moving onto the bottom of the page, the user can obtain the progressive failure analyses results for each force-

strain or moment-curvature pair (N11-ε1, N22-ε2, N66-ε6, M11-κ1, M22-κ2 and M66-κ6). For instance, Figure 23 shows

the M11-κ1 moment-curvature path up to failure considering the Tsai-Hill failure index. As described in section

2.5, each peak point is computed by determining the maximum force of the laminate for that given stack

configuration. Upon reaching the peak level there is a sudden drop which is related to the fact that some number

of laminae have reached their respective failure indices and thus are discounted from the analysis. This

evolution can be seen upon clicking the points on the force-strain path chart and analysing the two charts on

the right. The middle chart computes the considered failure index (in this case the Tsai-Hill index) across the

25

section thickness for all laminae that are still being considered in the analyses. The chart on the right shows the

stacking of the laminate highlighting in green the laminae that are still being considered in the analysis and in

red the laminae that have already reached failure and thus are discounted from the analysis (Figure 24).

Figure 23 – Force-strain progressive failure path chart (in this illustrative example M11-κ1).

Figure 24 – Force-strain progressive failure path chart, failure index chart and lamina discount chart (in this illustrative

example M11-κ1).

26

27

5 CONCLUSIONS

5.1 Main conclusions

This report described the theoretical background, the app development process and the user guide for the web-

app LAYUP | FRP Laminate Analysis. This work constituted an application of new web-based technologies to

the technical and scientific work in the field of FRP composites, consisting in the development of a user-friendly

tool and interface that allows users to perform straightforward and easy designs and analyses of FRP layups.

The fact that it is web-based allows for users to share their databases making these data accessible to everyone.

Within the EcoComposite project, this tool will help in the assessment of fibre-matrix compatibility, assessment

of the applicability of traditional FRP theoretical and analytical formulations to the bio-based composites, and

the development of layup optimization studies for different civil engineering applications of FRP.

5.2 Future developments

Despite the fact the LAYUP web-app is already online and ready to be used, there are some improvements that

should be addressed in future updates. These improvements are listed below.

1. User login credentials – the objective would be to have each user with unique login credentials and

different permissions in the app. Right now it is available for anyone with the same credentials, but this

fact could compromise the goals of producing a high standard database of raw materials and laminates.

Currently any user can add and delete materials (which might introduce irrelevant elements on the

database or delete important ones).

2. Save laminate object – similarly to the fibre and resin database tables, the aim is to create a laminate

database table with all the laminate inputs in order to use it in future analyses.

3. Property overwrites for bio-based resins – with the ongoing EcoComposite project one might conclude

that the CLT is not appropriate for bio-based polymers and one might need to adapt those equations to

take into account the fact that the resin is bio-based.

4. Migration to the IST servers – currently the web-app is hosted on a free-tier of a third-party server

provider. Despite being able to be used without restrictions, the web-app takes a considerable amount

of time to be loaded and also its computational resources are limited. Thus, it would be useful to migrate

it to the IST servers since the whole project is being developed at IST and these constraints would be

easily overcome.

5. Enabling exports – for some users, the results provided by LAYUP might not be enough and they may

need some sort of post-processing. Thus, enabling exports as .csv, .xls or .pdf files might be useful.

28

6. Enabling the use of hybrid composites – hybrid laminates comprising different types of fibres (for

instance carbon and glass) can be an interesting solution for some applications. Although this approach

is already possible in the back-end (through the addition of laminae with different materials or

thicknesses), it is not yet implemented in the front-end of the web-app.

7. Adding other data – cost, carbon footprint and weight of the laminate are some of the data that might

be useful for the user and for future optimization studies and should be taken as an input for the

materials and output for the resulting laminates.

29

6 REFERENCES

1. Bank, L.C. (2006). Composites for Construction (Hoboken, NJ, USA: John Wiley & Sons, Inc.) Available

at: http://doi.wiley.com/10.1002/9780470121429.

2. Correia, J.R. (2008). GFRP pultruded profiles in civil engineering: hybrid solutions, bonded connections

and fire behaviour. PhD Thesis in Civil Engineering. University of Lisbon.

3. Hewitt, R.L., and de Malherbe, M.C. (1970). An Approximation for the Longitudinal Shear Modulus of

Continuous Fibre Composites. J. Compos. Mater. 4, 280–282.

4. Loos, M. (2015). Chapter 5 - Fundamentals of Polymer Matrix Composites Containing CNTs. In Carbon

Nanotube Reinforced Composites, M. Loos, ed. (Oxford: William Andrew Publishing), pp. 125–170.

Available at: http://www.sciencedirect.com/science/article/pii/B9781455731954000059.

5. Jones, R.M. (1998). Mechanics of Composite Materials. Second Edi. (Philadelphia: Taylor & Francis).

6. Hashin, Z. (1980). Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 47, 329–334.

Available at: http://dx.doi.org/10.1115/1.3153664.

7. Hashin, Z., and Rotem, A. (1973). A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos.

Mater. 7, 448–464. Available at: http://jcm.sagepub.com/content/7/4/448.abstract.

8. Python Software Foundation (2019). Python Language Reference, version 3.7. Available at:

http://www.python.org.

9. Oliphant, T.E. (2006). A guide to NumPy. USA Trelgol Publ. Available at:

https://docs.scipy.org/doc/numpy/index.html [Accessed October 21, 2019].

10. McKinney, W. (2010). Data Structures for Statistical Computing in Python. Proc. 9th Python Sci. Conf.,

51–56. Available at: https://pandas.pydata.org/pandas-docs/stable/.

11. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., and Vicente, L.N. (2011). Direct Multisearch for

Multiobjective Optimization. SIAM J. Optim. 21, 1109–1140. Available at:

http://epubs.siam.org/doi/abs/10.1137/10079731X.

12. Martín Abadi, Ashish Agarwal, Paul Barham, E.B., Zhifeng Chen, Craig Citro, Greg S. Corrado, A.D.,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, I.G., Andrew Harp, Geoffrey Irving, Michael Isard,

Rafal Jozefowicz, Y.J., Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, M.S., Rajat

Monga, Sherry Moore, Derek Murray, Chris Olah, J.S., Benoit Steiner, Ilya Sutskever, Kunal Talwar,

P.T., Vincent Vanhoucke, Vijay Vasudevan, F.V., Oriol Vinyals, Pete Warden, Martin Wattenberg, M.W.,

and Yuan Yu, and X.Z. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

30

Available at: tensorflow.org [Accessed October 30, 2019].

13. James, G., Witten, D., Hastie, T., and Tibshirani, R. (2017). Introduction to Statistical Learning with

Applications in R (Springer).

14. Plotly Technologies Inc. (2015). Collaborative data science. Available at: https://plot.ly [Accessed

October 30, 2019].

31

APPENDIX – BACK-END SCRIPT

importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from math import cos, sin, radians, degrees, sqrt
from numpy.linalg import inv
float_formatter = lambda x: "%.2f" % x
np.set_printoptions(formatter={float_kind:float_formatter})
import dash_core_components as dcc
import dash_html_components as html
from copy import deepcopy

"""
These analyses are based on formulations proposed by LC Bank on Composites for
Construction.

Changelog:
 - the value of the major poisson is considered to be 12 (or LT) and not 21
(or TL);
 - the third term of the transformation matrix is wrong: it now reads c**2-
s**2

"""

defining the resin object
class Resin:

 """Creates a new Resin object"""

 def __init__(self, E, poisson, strength, density=1200):
 # density in kg/m**3
 self.density = density
 # Elastic modulus in GPa
 self.E = E
 # poisson ratio
 self.poisson = poisson
 # shear modulus in GPa
 self.G = self.E/(2*(1+self.poisson))
 # strength
 self.strength = strength
 # shear strength
 self.tau = self.strength/sqrt(3)
 # resin volume
 self.volume = None
 # resin name
 self.name = None

 def set_name(self, name):
 self.name = name

32

defining the fibre object
class Fibre:

 """Creates a new Fibre object"""

 def __init__(self, E, poisson, strength, density=2500):
 # density in kg/m**3
 self.density = density
 # elastic modulus in GPa
 self.E = E
 # poisson ratio
 self.poisson = poisson
 # shear modulus in GPa
 self.G = self.E/(2*(1+self.poisson))
 # strength
 self.strength = strength
 # shear strength
 self.tau = self.strength/sqrt(3)
 # fibre volume
 self.volume = None
 # fibre name
 self.name = None
 # boolean variable indicating if it is fabric
 self.is_fabric = False
 # set the balance between the longitudinal and transverse direction
 self.balance = 1

 def set_name(self, name):
 self.name = name

defining the fabric object
class Fabric(Fibre):

 """Creates a new Fabric object"""

 def __init__(self, fibre, area_weight_L, area_weight_T):
 if area_weight_L == 0:
 print(ERROR. The area weight in the longitudinal direction must not
be null. \
 The fibre direction can be rotated upon assigning a stack
orientation to the laminate object)
 else:
 Fibre.__init__(self, fibre.E, fibre.poisson, fibre.strength,
fibre.density)
 # area weight in the longitudinal direction
 self.area_weight_L = area_weight_L
 # area weight in the transverse direction
 self.area_weight_T = area_weight_T
 # total area weight
 self.area_weight = area_weight_L + area_weight_T
 # assign boolean value speficying that it is a fabric
 self.is_fabric = True
 self.balance = self.area_weight_L/(self.area_weight)
 # assigning a fibre object
 self.fibre = fibre

defining the lamina object
class Lamina:

33

 """Creates a new Lamina object"""

 def __init__(self, resin, fibre, volume, theta, halpin_tsai=False):
 # assigning the type of resin
 self.resin = resin
 # assigning the type of fibre
 self.fibre = fibre
 # defining the fibre volume (0-1)
 self.volume = volume
 fibre.volume = volume
 resin.volume = 1-volume
 # lamina orientation in radians
 theta = radians(theta)
 self.theta = theta
 # setting the halpin_tsai boolean variable
 self.halpin_tsai = halpin_tsai
 # assigning z_bot (height at the bottom) and z_top (height at the top)
 # variables (will only be filled in the laminate object)
 self.z_bot = None
 self.z_top = None
 # checking whether the fibres are unidirectional or bidirectional
 if fibre.balance == 1:
 self.is_bidirectional = False
 self.is_unidirectional = True
 # compute the elastic moduli and matrices
 self.compute_moduli()
 self.compute_matrices()
 else:
 self.is_bidirectional = True
 self.is_unidirectional = False
 self.set_bidirectional(fibre.balance)
 if self.fibre.is_fabric:
 # compute te automatic thickness according to the CLT formulation
 self.thickness = self.fibre.area_weight*10**-
3/(self.fibre.density*self.volume)
 else:
 self.thickness = None
 self.maximum_stress_index = None
 self.tsai_hill_index = None
 self.ply_failure = False

 def __str__(self):
 return .join([Lamina(resin,fibre,,str(self.volume),,,str(self.theta),)])

 def compute_moduli(self):
 # self properties
 resin = self.resin
 fibre = self.fibre
 volume = self.volume
 # longitudinal elastic modulus
 self.EL = resin.E*resin.volume + fibre.E*fibre.volume
 # longitudinal strength
 self.strengthL = resin.strength*resin.volume +
fibre.strength*fibre.volume
 # transverse elastic modulus
 self.ET = 1/(resin.volume/resin.E + fibre.volume/fibre.E)
 # transverse strength
 self.strengthT = 1/(resin.volume/resin.strength +
fibre.volume/fibre.strength)

34

 # poisson LT
 self.poissonLT = resin.poisson*resin.volume + fibre.poisson*fibre.volume
 # poisson TL
 self.poissonTL = self.ET/self.EL*self.poissonLT
 # shear modulus of the layer
 self.GLT = 1/(resin.volume/resin.G + fibre.volume/fibre.G)
 # shear strength
 self.strengthLT = 1/(resin.volume/resin.tau + fibre.volume/fibre.tau)
 # compute the transverse and shear modulus according to the Halpin-Tsai
equations
 if self.halpin_tsai:
 if volume < 0.65:
 # xi parameter according to the original halpin tsai formulation
 self.xi_ET = 2
 self.xi_GLT = 1
 else:
 # xi parameter according Hewitt and de Malherbe variation
 self.xi_ET = 2 + 40*volume**10
 self.xi_GLT = 1 + 40*volume**10
 self.eta_ET = ((fibre.E/resin.E)-1)/((fibre.E/resin.E)+self.xi_ET)
 self.ET = (1+self.xi_ET*self.eta_ET*volume)/(1-
self.eta_ET*volume)*resin.E
 self.eta_GLT = ((fibre.G/resin.G)-1)/((fibre.G/resin.G)+self.xi_GLT)
 self.GLT = (1+self.xi_GLT*self.eta_GLT*volume)/(1-
self.eta_GLT*volume)*resin.G

 def compute_matrices(self):
 # self properties
 theta = self.theta
 # lamina stiffness matrix
 self.QLT = np.array(
 [self.EL/(1-self.poissonLT*self.poissonTL),
 self.EL*self.poissonTL/(1-self.poissonLT*self.poissonTL),
 0,
 self.ET*self.poissonLT/(1-self.poissonLT*self.poissonTL),
 self.ET/(1-self.poissonLT*self.poissonTL),
 0,
 0,
 0,
 self.GLT]).reshape(3,3)*1000
 # lamina transformation matrix
 self.transform_matrix = np.array(
 [cos(theta)**4,
 sin(theta)**4,
 2*cos(theta)**2*sin(theta)**2,
 4*cos(theta)**2*sin(theta)**2,
 sin(theta)**4,
 cos(theta)**4,
 2*cos(theta)**2*sin(theta)**2,
 4*cos(theta)**2*sin(theta)**2,
 cos(theta)**2*sin(theta)**2,
 cos(theta)**2*sin(theta)**2,
 cos(theta)**4+sin(theta)**4,
 -4*cos(theta)**2*sin(theta)**2,
 cos(theta)**2*sin(theta)**2,
 cos(theta)**2*sin(theta)**2,
 -2*cos(theta)**2*sin(theta)**2,
 (cos(theta)**2-sin(theta)**2)**2,
 cos(theta)**3*sin(theta),

35

 -cos(theta)*sin(theta)**3,
 cos(theta)*sin(theta)**3-cos(theta)**3*sin(theta),
 2*(cos(theta)*sin(theta)**3-cos(theta)**3*sin(theta)),
 cos(theta)*sin(theta)**3,
 -cos(theta)**3*sin(theta),
 cos(theta)**3*sin(theta)-cos(theta)*sin(theta)**3,
 2*(cos(theta)**3*sin(theta)-cos(theta)*sin(theta)**3),
]).reshape(6,4)
 # lamina fibre alignment orientation properties
 self.Q_0 = np.array(
 [self.QLT[0,0],
 self.QLT[1,1],
 self.QLT[0,1],
 self.QLT[2,2]])
 # lamina theta degree orientation properties
 self.Q_oriented = np.matmul(self.transform_matrix, self.Q_0)
 # lamina theta degree orientation properties
 self.Q_oriented_square = np.array(
 [self.Q_oriented[0],
 self.Q_oriented[2],
 self.Q_oriented[4],
 self.Q_oriented[2],
 self.Q_oriented[1],
 self.Q_oriented[5],
 self.Q_oriented[4],
 self.Q_oriented[5],
 self.Q_oriented[3]]).reshape(3,3)
 self.S = inv(self.Q_oriented_square)
 # compute the theta oriented elastic properties
 self.E1 = 1/self.S[0,0]/1000
 self.E2 = 1/self.S[1,1]/1000
 self.E6 = 1/self.S[2,2]/1000
 self.poisson12 = -self.S[1,0]/self.S[0,0]
 self.poisson21 = -self.S[0,1]/self.S[1,1]

 def set_bidirectional(self, balance):
 # assign the fraction of fibres that are aligned in the longitudinal
direction of the lamina
 self.balance = balance
 lamina_0 = Lamina(self.resin, self.fibre.fibre, self.volume, 0,
halpin_tsai=self.halpin_tsai)
 lamina_0.compute_moduli()
 lamina_0.compute_matrices()
 lamina_90 = Lamina(self.resin, self.fibre.fibre, self.volume, 90,
halpin_tsai=self.halpin_tsai)
 lamina_90.compute_moduli()
 lamina_0.compute_matrices()
 # longitudinal elastic modulus
 self.EL = lamina_0.E1*balance + lamina_90.E1*(1-balance)
 # longitudinal strength
 self.strengthL = lamina_0.strengthL*balance + lamina_90.strengthT*(1-
balance)
 # transverse elastic modulus
 self.ET = lamina_0.E2*balance + lamina_90.E2*(1-balance)
 # transverse strength
 self.strengthT = lamina_0.strengthT*balance + lamina_90.strengthL*(1-
balance)
 # poisson LT

36

 self.poissonLT = lamina_0.poisson12*balance + lamina_90.poisson12*(1-
balance)
 # poisson TL
 self.poissonTL = self.ET/self.EL*self.poissonLT
 # shear modulus of the lamina
 self.GLT = lamina_0.E6*balance + lamina_90.E6*(1-balance)
 # shear strength
 self.strengthLT = lamina_0.strengthLT*balance + lamina_90.strengthLT*(1-
balance)
 # compute lamina matrices
 self.compute_matrices()

defining the laminate object
class Laminate:

 """Creates a new Laminate object"""

 def __init__(self):
 # list of all laminae in the laminate
 self.laminae = []
 # list of thicknesses for each lamina
 self.thicknesses = []
 # list of centroids for each lamina
 self.centroids = []
 # number of laminae in the laminate
 self.num_laminae = len(self.laminae)
 # total thickness
 self.total_thickness = sum(self.thicknesses)

 # add a single lamina to the laminate
 def add_lamina(self, lamina, thickness=None, compute_properties=True):

 """Add a single lamina to the laminate"""
 # flag an error to check if the thickness is specified or not
 error = False
 # check whether the fibre material is fabric or not
 if lamina.fibre.is_fabric:
 # compute te automatic thickness according to the CLT formulation
 thickness_auto = lamina.fibre.area_weight*10**-
3/(lamina.fibre.density*lamina.volume)
 # check if the thickness was provided and overwrite it
 if thickness != None:
 print(WARNING. For laminae with the fabric object, the thickness
is automatically computed \
 according to the CLT formulation. The value of {} was
overwritten to {}.format(thickness, thickness_auto))
 thickness = thickness_auto
 # if the fibre object is not fabric the thickness must be provided
 else:
 # if no thickness is provided return an error and exit the analysis
 if thickness == None:
 print(ERROR. For laminae without the fabric object, the thickness
should be specified.)
 error = True
 # exit the analysis
 if error:
 pass
 # continue the analysis
 else:

37

 # add the lamina to the laminae list
 self.laminae.append(lamina)
 lamina.z_bot = self.total_thickness
 lamina.z_top = lamina.z_bot + thickness
 # add the thickness to the thicknesses list
 lamina.thickness = thickness
 self.thicknesses.append(thickness)
 # add the centroid to the centroids list
 centroid = self.total_thickness + thickness/2
 self.centroids.append(centroid)
 # number of laminae in the laminate
 self.num_laminae = len(self.laminae)
 # total thickness
 self.total_thickness = sum(self.thicknesses)
 if compute_properties:
 # compute ABD stiffness matrix
 self.compute_ABD_matrix()
 self.compute_effective_moduli()

 # add multiple laminae to the laminate
 def add_multiple_laminae(self, resin, fibre, volume, thickness_list,
angle_list, halpin_tsai=False):

 """Add multiple laminae to the laminate"""

 # check the length of each list
 if len(thickness_list)==len(angle_list):
 # create all the laminae
 for i in range(len(thickness_list)):
 # assign the lamina properties
 lamina = Lamina(resin, fibre, volume, angle_list[i],
halpin_tsai=halpin_tsai)
 self.add_lamina(lamina, thickness=thickness_list[i],
compute_properties=False)
 # number of laminae in the laminate
 self.num_laminae = len(self.laminae)
 # compute de ABD stiffness matrix
 self.compute_ABD_matrix()
 self.compute_effective_moduli()
 else:
 print(ERROR. Lists must be of the same length)

 def compute_ABD_matrix(self):

 """Computes the laminate A-B-D matrix"""

 #laminae properities data frame
 self.df = pd.DataFrame()
 if self.num_laminae > 0:
 # definition of matrix Q
 self.df[Q11] = [lamina.Q_oriented[0] for lamina in self.laminae]
 self.df[Q22] = [lamina.Q_oriented[1] for lamina in self.laminae]
 self.df[Q12] = [lamina.Q_oriented[2] for lamina in self.laminae]
 self.df[Q66] = [lamina.Q_oriented[3] for lamina in self.laminae]
 self.df[Q16] = [lamina.Q_oriented[4] for lamina in self.laminae]
 self.df[Q26] = [lamina.Q_oriented[5] for lamina in self.laminae]
 # thickness for each lamina
 self.df[thickness] = [thickness for thickness in self.thicknesses]
 # centroid for each lamina

38

 self.df[zk] = [-centroid+self.total_thickness/2 for centroid in
self.centroids]
 # definition of matrix A
 self.df[A11_i] = self.df[Q11]*self.df[thickness]
 self.df[A22_i] = self.df[Q22]*self.df[thickness]
 self.df[A12_i] = self.df[Q12]*self.df[thickness]
 self.df[A66_i] = self.df[Q66]*self.df[thickness]
 self.df[A16_i] = self.df[Q16]*self.df[thickness]
 self.df[A26_i] = self.df[Q26]*self.df[thickness]
 self.A = np.zeros((3,3))
 self.A[0,0] = self.df[A11_i].sum()*1000
 self.A[1,1] = self.df[A22_i].sum()*1000
 self.A[0,1] = self.A[1,0] = self.df[A12_i].sum()*1000
 self.A[2,2] = self.df[A66_i].sum()*1000
 self.A[0,2] = self.A[2,0] = self.df[A16_i].sum()*1000
 self.A[1,2] = self.A[2,1] = self.df[A26_i].sum()*1000
 # definition of matrix B
 self.df[B11_i] = self.df[Q11]*(-self.df[zk]*self.df[thickness])
 self.df[B22_i] = self.df[Q22]*(-self.df[zk]*self.df[thickness])
 self.df[B12_i] = self.df[Q12]*(-self.df[zk]*self.df[thickness])
 self.df[B66_i] = self.df[Q66]*(-self.df[zk]*self.df[thickness])
 self.df[B16_i] = self.df[Q16]*(-self.df[zk]*self.df[thickness])
 self.df[B26_i] = self.df[Q26]*(-self.df[zk]*self.df[thickness])
 self.B = np.zeros((3,3))
 self.B[0,0] = self.df[B11_i].sum()*1000
 self.B[1,1] = self.df[B22_i].sum()*1000
 self.B[0,1] = self.B[1,0] = self.df[B12_i].sum()*1000
 self.B[2,2] = self.df[B66_i].sum()*1000
 self.B[0,2] = self.B[2,0] = self.df[B16_i].sum()*1000
 self.B[1,2] = self.B[2,1] = self.df[B26_i].sum()*1000
 # definition of matrix D
 self.df[D11_i] =
self.df[Q11]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.df[D22_i] =
self.df[Q22]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.df[D12_i] =
self.df[Q12]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.df[D66_i] =
self.df[Q66]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.df[D16_i] =
self.df[Q16]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.df[D26_i] =
self.df[Q26]*(self.df[thickness]*self.df[zk]**2+(self.df[thickness]**3)/12)
 self.D = np.zeros((3,3))
 self.D[0,0] = self.df[D11_i].sum()*1000**3
 self.D[1,1] = self.df[D22_i].sum()*1000**3
 self.D[0,1] = self.D[1,0] = self.df[D12_i].sum()*1000**3
 self.D[2,2] = self.df[D66_i].sum()*1000**3
 self.D[0,2] = self.D[2,0] = self.df[D16_i].sum()*1000**3
 self.D[1,2] = self.D[2,1] = self.df[D26_i].sum()*1000**3
 # ABD matrix definition
 AB = np.concatenate((self.A, self.B), axis = 1)
 BD = np.concatenate((self.B, self.D), axis = 1)
 self.ABD = np.concatenate((AB,BD), axis = 0)

 def compute_effective_moduli(self):
 self.a = inv(self.A)
 self.d = inv(self.D)
 # axial effective moduli

39

 self.E1_0 = (self.a[0,0]*self.total_thickness*1000)**(-1)
 self.E2_0 = (self.a[1,1]*self.total_thickness*1000)**(-1)
 self.E6_0 = (self.a[2,2]*self.total_thickness*1000)**(-1)
 self.poisson21_0 = -self.a[0,1]/self.a[1,1]
 self.poisson12_0 = -self.a[1,0]/self.a[0,0]
 # flexural effective moduli
 self.E1_f = 12/(self.d[0,0]*(self.total_thickness*1000)**3)
 self.E2_f = 12/(self.d[1,1]*(self.total_thickness*1000)**3)
 self.E6_f = 12/(self.d[2,2]*(self.total_thickness*1000)**3)
 self.poisson21_f = -self.d[0,1]/self.d[1,1]
 self.poisson12_f = -self.d[1,0]/self.d[0,0]

 def ABD_as_dataframe (self):

 """Converts a numpy array matrix into a pandas Data Frame"""

 df = pd.DataFrame(data=self.ABD)
 return df

 def compute_stress_state(self, N1, N2, N6, M1, M2, M6):

 """Computes a stress-strain state for given loads"""

 # instanciate a pandas data frame with the analysis
 df = pd.DataFrame(columns=[z (m), Angle (º),
 Strain 11 (m/m), Strain 22 (m/m), Strain 66
(m/m),
 Stress 11 (MPa), Stress 22 (MPa), Stress 66
(MPa),
 Stress L (MPa), Stress T (MPa), Stress LT
(MPa),
 Maximum stress, Tsai-Hill])
 # compute the inverse of matrix ABD
 ABD_inv = inv(self.ABD)
 # define the array of forces per unit width
 force_array = np.array([N1, N2, N6, M1, M2, M6])
 # compute the strain array
 strains = [e1, e2, e6, k1, k2, k6] = np.matmul(ABD_inv, force_array)
 # instanciate lists of strains, stresses and heights
 strain_list = []
 stress_list = []
 z_list = []
 # instanciate a counter for adding rows to the pandas data frame
 counter = 0
 # compute the strains and stresses in each lamina of the laminate
 for lamina in self.laminae:
 # transformation matrix from stress aligned along the laminate to
stresses aligned along the lamina
 transform_matrix = np.array([
 cos(lamina.theta)**2,
 sin(lamina.theta)**2,
 2*cos(lamina.theta)*sin(lamina.theta),
 sin(lamina.theta)**2,
 cos(lamina.theta)**2,
 -2*cos(lamina.theta)*sin(lamina.theta),
 -cos(lamina.theta)*sin(lamina.theta),
 cos(lamina.theta)*sin(lamina.theta),
 cos(lamina.theta)**2-sin(lamina.theta)**2
]).reshape(3,3)

40

 # bottom of the layer
 strain_bot_1 = e1 - k1*(lamina.z_bot-self.total_thickness/2)*1000
 strain_bot_2 = e2 - k2*(lamina.z_bot-self.total_thickness/2)*1000
 strain_bot_6 = e6 - k6*(lamina.z_bot-self.total_thickness/2)*1000
 # determination of the stresses for the bottom face
 [stress_bot_1, stress_bot_2, stress_bot_6] = \

np.matmul(lamina.Q_oriented_square,[strain_bot_1,strain_bot_2,strain_bot_6])
 # compute the lamina oriented stresses in the top face of the lamina
 [stress_bot_L, stress_bot_T, stress_bot_LT] = np.matmul(
 transform_matrix, [stress_bot_1, stress_bot_2, stress_bot_6])
 # top of the lamina
 strain_top_1 = e1 - k1*(lamina.z_top-self.total_thickness/2)*1000
 strain_top_2 = e2 - k2*(lamina.z_top-self.total_thickness/2)*1000
 strain_top_6 = e6 - k6*(lamina.z_top-self.total_thickness/2)*1000
 # determination of the stresses for the top face
 [stress_top_1, stress_top_2, stress_top_6] = \

np.matmul(lamina.Q_oriented_square,[strain_top_1,strain_top_2,strain_top_6])
 # compute the lamina oriented stresses in the top face of the lamina
 [stress_top_L, stress_top_T, stress_top_LT] = np.matmul(
 transform_matrix, [stress_top_1, stress_top_2, stress_top_6])
 # compute the maximum stress index
 max_stress_top = max(
 abs(stress_top_L)/lamina.strengthL,
 abs(stress_top_T)/lamina.strengthT,
 abs(stress_top_LT)/lamina.strengthLT)
 max_stress_bot = max(
 abs(stress_bot_L)/lamina.strengthL,
 abs(stress_bot_T)/lamina.strengthT,
 abs(stress_bot_LT)/lamina.strengthLT)
 lamina.maximum_stress_index = max(max_stress_top, max_stress_bot)
 # compute the Tsai-Hill index
 tsai_hill_top = stress_top_L**2/lamina.strengthL**2-
stress_top_L*stress_top_T/lamina.strengthL**2+\

stress_top_T**2/lamina.strengthT**2+stress_top_LT**2/lamina.strengthLT**2
 tsai_hill_bot = stress_bot_L**2/lamina.strengthL**2-
stress_bot_L*stress_bot_T/lamina.strengthL**2+\

stress_bot_T**2/lamina.strengthT**2+stress_bot_LT**2/lamina.strengthLT**2
 lamina.tsai_hill_index = max(tsai_hill_top, tsai_hill_bot)
 # add the information to the pandas data frame
 df.loc[counter] = [lamina.z_bot, degrees(lamina.theta),
 strain_bot_1, strain_bot_2, strain_bot_6,
 stress_bot_1, stress_bot_2, stress_bot_6,
 stress_bot_L, stress_bot_T, stress_bot_LT,
 max_stress_bot, tsai_hill_bot]
 df.loc[counter+1] = [lamina.z_top, degrees(lamina.theta),
 strain_top_1, strain_top_2, strain_top_6,
 stress_top_1, stress_top_2, stress_top_6,
 stress_top_L, stress_top_T, stress_top_LT,
 max_stress_top, tsai_hill_top]
 counter += 2
 return df

 def compute_maximum_stress_index(self, df):
 return max(df[Maximum stress])

41

 def compute_tsai_hill_index(self, df):
 return max(df[Tsai-Hill])

 def compute_hashin_criterion(self, df):
 pass

 def get_max_force(self, index_target=1, force_type=N1, force_sign=plus,
index_type=Tsai-Hill, tolerance=1e-3):

 # instanciate the variables
 index = 0
 if force_sign == plus:
 force = 1
 elif force_sign == minus:
 force=-1
 else:
 print(ERROR. The force_sign variable should be either plus or minus)
 i=0
 # find solution to the problem
 while (index-index_target)**2 > tolerance:
 # assign the force array according to the variable force_type
 if force_type == N1:
 [N1, N2, N6, M1, M2, M6] = [force, 0, 0, 0, 0, 0]
 elif force_type == N2:
 [N1, N2, N6, M1, M2, M6] = [0, force, 0, 0, 0, 0]
 elif force_type == N6:
 [N1, N2, N6, M1, M2, M6] = [0, 0, force, 0, 0, 0]
 elif force_type == M1:
 [N1, N2, N6, M1, M2, M6] = [0, 0, 0, force, 0, 0]
 elif force_type == M2:
 [N1, N2, N6, M1, M2, M6] = [0, 0, 0, 0, force, 0]
 elif force_type == M6:
 [N1, N2, N6, M1, M2, M6] = [0, 0, 0, 0, 0, force]
 else:
 print(ERROR. The force_type should be either N1, N2, N6, M1, M2
or M6)

 # calculate the step results
 df = self.compute_stress_state(N1, N2, N6, M1, M2, M6)
 if index_type == Tsai-Hill:
 index = self.compute_tsai_hill_index(df)
 # assign the new force value
 force = force/sqrt(index)
 elif index_type == Maximum stress:
 index = self.compute_maximum_stress_index(df)
 # assign the new force value
 force = force/index
 i+=1
 return force, i, [N1, N2, N6, M1, M2, M6]

 def get_max_force_list_factor(self, force_list, index_target=1,
index_type=Tsai-Hill, tolerance=1e-3):

 # instanciate the variables
 index = 0
 i=0
 [N1, N2, N6, M1, M2, M6] = force_list
 force_factor=1
 # find solution to the problem

42

 while (index-index_target)**2 > tolerance:
 # calculate the step results
 df = self.compute_stress_state(N1, N2, N6, M1, M2, M6)
 if index_type == Tsai-Hill:
 index = self.compute_tsai_hill_index(df)
 elif index_type == Maximum stress:
 index = self.compute_maximum_stress_index(df)
 # assign the new force value
 factor = 1/sqrt(index)
 force_factor = force_factor*factor
 force_list = [N1, N2, N6, M1, M2, M6] = np.array(force_list)*factor
 i+=1
 return force_factor, force_list, i
def compute_load_strain_path(laminate, force_type='N1', index_type='Tsai-Hill'):
 # assing a temporary laminate object to perform all calculations
 temp_laminate = deepcopy(laminate)
 # instanciate a boolean failure list
 step_bool_failure_list = [int(lamina.ply_failure) for lamina in
temp_laminate.laminae]
 bool_failure_list = []
 bool_failure_list.append(step_bool_failure_list)
 # instanciate lists of path forces and strains
 force_path = [0]
 strain_path = [0]
 # instantiating the lists for the maximum stress and the tsai-hill index
 maximum_stress_list = [[0 for i in range(len(temp_laminate.laminae)*2)]]
 tsai_hill_index_list = [[0 for i in range(len(temp_laminate.laminae)*2)]]
 # while there are laminae without failure
 while 0 in step_bool_failure_list:
 # get the maximum force attained
 step_force_array = [N1, N2, N6, M1, M2, M6] =
temp_laminate.get_max_force(force_type=force_type, index_type=index_type)[2]
 step_bool_failure_list = [int(lamina.ply_failure) for lamina in
temp_laminate.laminae]
 bool_failure_list.append(step_bool_failure_list)
 # compute the inverse ABD matrix
 ABD_inv = inv(temp_laminate.ABD)
 # compute the step strain array
 step_strain_array = [e1, e2, e6, k1, k2, k6] = np.matmul(ABD_inv,
step_force_array)
 df = temp_laminate.compute_stress_state(N1, N2, N6, M1, M2, M6)
 maximum_stress_list.append(list(df['Maximum stress']))
 tsai_hill_index_list.append(list(df['Tsai-Hill']))
 # append the force and strain pair to the path lists according to the
variable force_type
 if force_type == 'N1':
 force_path.append(N1)
 strain_path.append(e1)
 elif force_type == 'N2':
 force_path.append(N2)
 strain_path.append(e2)
 elif force_type == 'N6':
 force_path.append(N6)
 strain_path.append(e6)
 elif force_type == 'M1':
 force_path.append(M1)
 strain_path.append(k1)
 elif force_type == 'M2':
 force_path.append(M2)

43

 strain_path.append(k2)
 elif force_type == 'M6':
 force_path.append(M6)
 strain_path.append(k6)
 else:
 print('ERROR. The force_type should be either N1, N2, N6, M1, M2 or
M6')
 # check if the index is already achieved or not
 if index_type == 'Tsai-Hill':
 tsai_hill = temp_laminate.compute_tsai_hill_index(df)
 for lamina in temp_laminate.laminae:
 if round(lamina.tsai_hill_index*1000)/1000 == 1:
 lamina.Q_oriented = lamina.Q_oriented/1e6
 lamina.Q_oriented_square = lamina.Q_oriented_square/1e6
 lamina.ply_failure = True
 elif index_type == 'Maximum stress':
 max_stress = temp_laminate.compute_maximum_stress_index(df)
 for lamina in temp_laminate.laminae:
 if round(lamina.maximum_stress_index*1000)/1000 == 1:
 lamina.Q_oriented = lamina.Q_oriented/1e6
 lamina.Q_oriented_square = lamina.Q_oriented_square/1e6
 lamina.ply_failure = True
 step_bool_failure_list = [int(lamina.ply_failure) for lamina in
temp_laminate.laminae]
 bool_failure_list.append(step_bool_failure_list)
 temp_laminate.compute_ABD_matrix()
 temp_laminate.compute_effective_moduli()
 step_force_array = [N1, N2, N6, M1, M2, M6] =
np.matmul(temp_laminate.ABD, step_strain_array)
 df = temp_laminate.compute_stress_state(N1, N2, N6, M1, M2, M6)
 maximum_stress_list.append(list(df['Maximum stress']))
 tsai_hill_index_list.append(list(df['Tsai-Hill']))
 # append the force and strain pair to the path lists according to the
variable force_type
 if force_type == 'N1':
 force_path.append(N1)
 strain_path.append(e1)
 elif force_type == 'N2':
 force_path.append(N2)
 strain_path.append(e2)
 elif force_type == 'N6':
 force_path.append(N6)
 strain_path.append(e6)
 elif force_type == 'M1':
 force_path.append(M1)
 strain_path.append(k1)
 elif force_type == 'M2':
 force_path.append(M2)
 strain_path.append(k2)
 elif force_type == 'M6':
 force_path.append(M6)
 strain_path.append(k6)
 else:
 print('ERROR. The force_type should be either N1, N2, N6, M1, M2 or
M6')
 laminate_height_list = list(df['z (m)']*1000)

 return force_path, strain_path, bool_failure_list, laminate_height_list,
maximum_stress_list, tsai_hill_index_list

44

def run_random_stack_sequence_test(resin, fibre, volume, test_number,
layer_thickness, layer_number, angles_available=[0, 30, 45, 60, 90, -30, -45, -
60],force_array):

 laminates = []
 stacks = []

 for i in range(test_number):
 laminate = Laminate()
 stack = []
 for i in range(layer_number):
 angle = int(np.random.randint(len(angles_available), size=1))
 stack.append(angles_available[angle])
 laminate.add_multiple_laminae(polyester, glass, volume, [layer_thickness
for i in range(layer_number)], stack)
 stacks.append(stack)
 laminates.append(laminate)

 forces=[]
 for laminate in laminates:
 force = laminate.get_max_force_list_factor(force_array)
 forces.append(force[0])
 argmax = forces.index(max(forces))
 return max(forces), argmax

