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de Engenharia da Universidade de Minho

Doctor Nuno Miguel Rosa Pereira Silvestre, Professor Associado do Instituto
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Abstract
The present thesis addresses the numerical modelling of the fire behaviour of pul-

truded glass fibre reinforced polymer (GFRP) profiles. An uncoupled finite element (FE)
formulation is developed to evaluate the thermal (heat flux and temperature fields) and
mechanical (generalized stresses, strains and displacements) behaviour of GFRP profiles
(beams and columns) with generic cross section, for both protected and unprotected sit-
uations, subjected to fire.

An in-house software is developed in MATLAB comprising four nonlinear FE moduli:
(i) heat transfer, (ii) non-isothermal fluid dynamics, (iii) mechanical, and (iv) thermo-
mechanical. All codes are thoroughly verified using benchmark solutions available in the
literature.

A coupled nonlinear two-dimensional FE model is developed to solve the system of
equations derived from the conjugate heat transfer and fluid dynamics problems. The code
considers the possible radiative heat exchanges between the faces of a cavity, as well as
the natural convection, allowing to evaluate the temperature field in a GFRP cross section
while the flow is laminar. A nonlinear one-dimensional FE code is developed to compute
the mechanical response of the GFRP profiles. A geometrically exact beam theory is
implemented by considering the Reissner–Simo kinematic assumptions, in order to avoid
any restrictions on the magnitude of the displacements and rotations. The generalized
displacement field is computed using a total Lagrangian scheme.

The ability of the code to evaluate the thermomechanical performance of GFRP profiles
is assessed by simulating experimental tests on GFRP beams and columns with different
cross sections, fire scenarios, fire protection systems and loading conditions. The thermal
simulations showed that the model proposed is able to reproduce with reasonable accuracy
the thermal response of the cross sections tested, highlighting the importance of consid-
ering simultaneously the radiative heat exchange between the faces of a cavity and the
natural convection. However, the simulation of the natural convective flow showed that, at
high temperatures, very reduced time steps are required to obtain a converged a solution.
This fact increases strongly the CPU time, making the calculation of the complete thermal
response not feasible in some of the cases studied.

Numerical simulations for profiles subjected to different fire scenarios were performed.
In these applications, the thermal response of the profiles was simulated: in almost all
cases, the model provided results for 60 minutes.

The mechanical behaviour of the GFRP beams was simulated with good accuracy
by the thermomechanical model proposed. However, in most of the cases studied, the
simulation of the mechanical behaviour of the GFRP columns was less accurate, probably
due to the uncertainties in some GFRP material properties (namely, the compressive
modulus and the thermal expansion coefficient) and the non consideration of creep effects.

Keywords: GFRP profiles, fire behaviour, fire protection systems, finite element
formulation, heat radiation in a cavity, heat transfer FE code, fluid dynamics FE code,
conjugate heat transfer FE code, geometrically exact beam theory, thermomechanical
behaviour.
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Resumo
Esta tese aborda a modelação numérica do comportamento ao fogo de perfis pultru-

didos de poĺımero reforçado com fibras de vidro (GFRP). Foi utilizada uma formulação
desacoplada de elementos finitos (EF) para avaliar a resposta térmica (distribuição de
fluxos e temperaturas) e mecânica (tensões, deformações e deslocamentos generalizados)
de elementos estruturais formados por perfis de GFRP (vigas e colunas) de secção genérica,
com e sem protecção térmica e sujeitos à acção do fogo.

Com recurso ao programa MATLAB, foi desenvolvido um código que incorpora qua-
tro módulos não lineares de EF: (i) transferência de calor, (ii) dinâmica de fluidos não
isotérmicos, (iii) mecânico e (iv) termomecânico. Todos os módulos foram verificados com
base em soluções de referência dispońıveis na bibliografia.

Para resolver o sistema de equações não lineares resultante da combinação dos prob-
lemas de transferência de calor e de dinâmica de fluidos, foi desenvolvido um modelo
bidimensional de EF. O código simula as trocas de calor por radiação entre as faces da
cavidade dos perfis de GFRP e a convecção natural do ar, permitindo calcular a dis-
tribuição de temperaturas na secção transversal enquanto o comportamento do fluido se
encontra em regime laminar. Relativamente à simulação da resposta mecânica dos perfis
de GFRP, foi desenvolvido um modelo unidimensional não linear de EF, em que foi im-
plementada a teoria de vigas geometricamente exacta, admitindo as hipóteses cinemáticas
de Reissner–Simo (sem restrições à magnitude dos deslocamentos e rotações). O campo
de deslocamentos foi calculado com recurso à formulação Lagrangiana total.

A capacidade do código desenvolvido em prever a resposta termomecânica de perfis de
GFRP foi avaliada através da simulação de ensaios experimentais realizados em vigas e
colunas com diferentes secções transversais e protecções ao fogo, e sujeitos a vários ńıveis
de carga e condições de exposição térmica. Os resultados numéricos, além de reproduzirem
com uma precisão razoável as distribuições de temperatura obtidas experimentalmente,
evidenciaram a importância da consideração simultânea das trocas de calor por convecção
e por radiação entre as faces das cavidades dos perfis. Contudo, estes resultados mostraram
que quando são atingidas temperaturas elevadas na cavidade, são necessários incrementos
de tempo muito reduzidos para obter convergência da solução. Este facto causa um forte
incremento do tempo de cálculo, não sendo posśıvel, em termos práticos, calcular a resposta
térmica completa em alguns dos casos analisados.

Foram efectuadas simulações numéricas de perfis submetidos a diferentes exposições
ao fogo. Nestas aplicações a resposta térmica dos perfis é obtida, em praticamente todos
os casos, até aos 60 minutos.

O modelo termomecânico permitiu simular a resposta mecânica de vigas de GFRP com
uma boa precisão. A simulação dos resultados mecânicos das colunas foi menos precisa,
provavelmente devido à incerteza nos valores das propriedades mecânicas do material
GFRP a temperaturas elevadas (nomeadamente, o módulo de elasticidade em compressão
e o coeficiente de expansão térmica) e ao facto de os efeitos de fluência não terem sido
considerados.

Palavras-chave: Perfis de GFRP, comportamento ao fogo, sistemas de protecção,
programa de EF, radiação em cavidades, código de EF transferência de calor, código de
EF de dinâmica de fluidos, código de EF transferência de calor sólido-fluido, teoria de
vigas geometricamente exacta, comportamento termomecânico.
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Notation, list of symbols and
abbreviations

Notation

The direct notation is used to express the algebraic operations and the nature of the
variables, as carried out by Tiago (2007). In specific cases, the matrix notation is also
utilised.

Italic Latin or Greek lowercase letters (a, b,...α, β,...) denote scalar quantities, bold
italic Latin or Greek lowercase letters (a, b,...α, β,...) indicate vectors and bold italic Latin
or Greek capital letters (A, B,...Ω, Θ,...) represent second order tensors. Furthermore,
they also represent the skew-symmetric second order tensors, while the associated axial
vector are denote by (a, b,...ω, θ,...).

For implementation purposes, the unknown vectors resulting after replacing the spatial
discretization are represented by bold Latin or Greek lowercase letters (a, b,...α, β,...) and
the resulting matrices are denoted by bold Latin or Greek capital letters (A, B,...Ω,Θ,...).

The indicial notation, where summation convention over repeated indices is implied,
is adopted. The italic Greek indices range from 1 to 2 and italic Latin subscripts from 1
to 3.

Punctual notation conflicts exist along the text. Most of them are duly pointed out
and the remaining should be easily understood from the context.

The applications and examples presented are in a coherent system of units, even if this
system is not always specified.

Regarding the derivatives, the comma notation is occasionally used where, for example,
(·),i = ∂(·)/∂xi. The derivatives of a variable with respect to time are represented by ˙(·)
and, finally, the notation (·)′ = ∂(·)/∂ζ is employed to define derivatives with respect to ζ.

Furthermore, the following sets, operators and operations are defined:

Sets
R Real number
∪ Set union
∩ Set intersection
∅ Empty set
∈ Belongs to
⊂ Is a subset of
∀ For all
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Operators
δ(·) Variation of, virtual quantity, iterative quantity
∆(·) Incremental perturbation
˙(·) Time variation

∇(·) Gradient of, differential operator
‖(·)‖ Norm of
axial(·) Axial vector of skew-symmetric second order tensor
div (·) Divergence of
tr(·) Trace operator of
∆2(·) Laplace operator

Operations
· Internal product of vectors
× Vectorial product of vectors
: Scalar product between second order tensors

Finite element formulation
A Assembly operator
(e) Generic element e

List of symbols

Roman letters

Symbol Description

A Pre-exponential factor, cross section area
A∗ Reduced cross section area
cp Specific heat capacity
cpc Specific heat capacity of the char material
cpf Specific heat capacity of the fibres
cpg Specific heat capacity of the gas
cpm Specific heat capacity of the matrix
cpv Specific heat capacity of the virgin material
d Distance between the points of two surfaces that exchange radiative heat flux

in a three-dimensional space
E Activation energy, Young’s modulus
Ef Young’s modulus of the fibres
Em Young’s Modulus of the matrix
F Fraction of virgin material computed using densities ( ρ−ρcρv−ρc ), shape factor
F i Prescribed loads in the i-direction
fc Mass fraction of char material (mc/m)
fv Mass fraction of virgin material (mv/m)
G Heat flux generation, shear modulus
Gr Grashof number
h Enthalpy of the composite, convective heat transfer coefficient, cross section

height
hg Enthalpy of the gas
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I Second order area moment of the cross section
k Thermal conductivity
k∗ Constant describing the breadth of the distribution
kc Thermal conductivity of the char material
kf Thermal conductivity of the fibres
km Thermal conductivity of the matrix
kv Thermal conductivity of the virgin material
L Length
L0 Initial length
M Internal moment
M Prescribed moment
m Mass of the composite, number of nodes where the pressure is approximated
mc Mass of the char material
mv Mass of the virgin material
m Prescribed distributed moment
ṁg Mass flux of the pyrolysis gas
n Number of nodes where the velocity/temperature are approximated, outward

normal to the cross-section of the beam
nG Gauss points number
N Internal axial force
Nu Nusselt number
P Generic mechanical property, applied concentrated load
PR Residual generic mechanical property value at high temperature
PU Generic mechanical property value at ambient temperature
Pr Prandtl number
p Pressure divided by the density, polynomial degree
pi Prescribed distributed loads in the i-direction
p̃ Absolute pressure
p̃r Relative pressure
p̃s Hydrostatic pressure
Qp Heat of decomposition
qi Heat flux in the i direction
q Normal prescribed heat flux
qh Convective heat flux
qr Radiative heat flux
qR Radiative heat flux in a generic surface
R Universal gas constant, radiosity variable
Rn Power law factor related to the residual resin content
Ra Rayleigh number
Re Reynolds number
r Distance between the points of two faces that exchange radiative heat flux in

a two-dimensional space
S First order area moment of the cross section
SeR Gray-diffusive surface e
t Time and traction on a boundary
U Energy, characteristic flow velocity
Û Exact energy of the solution
ui Displacements in the i-direction
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ui Prescribed displacements in the i-direction
V Volume of the composite, internal shear force
Vf Relative volume of the fibres
Vm Relative volume of the matrix
Wext External virtual work
Wint Internal virtual work
xi Spatial coordinate

Greek symbols

Symbol Description

α Thermal expansion coefficient of solids, thermal diffusivity
αc Thermal expansion of the char material
αv Pyrolysis expansion factor
αe Angle between the surface normal and the joining line of two points
β Thermal expansion of fluids
βe Angle between the face normal and the joining line of two points
Γ Boundary
Γq Prescribed heat flux boundary
Γh Convective heat transfer boundary
ΓR Radiosity heat transfer boundary
Γr Radiative heat transfer boundary
Γt Prescribed traction boundary
Γv Prescribed velocity boundary
Γθ Prescribed temperature boundary
Γt Static boundary
Γd Kinematic boundary
γ Angular distortion of the points laid in the axis bar
γ̃ Angular distortion at any point of the cross section
γ∆θ Angular distortion due to the temperature gradient
∆L Length variation
∆η Length variation
∆θ Temperature gradient
∆θL Linear temperature gradient
∆θU Uniform temperature gradient
ε Emissivity, axial deformation at any point of the cross section
ε∆θ Axial deformation due to the temperature gradient
ε Axial deformation of the points laid in the axis bar
ζ Arc-length parameter
θ Temperature, rotation
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θa Ambient temperature
θcr Critical temperature
θg Glass transition temperature
θg,mech Mechanically observed glass transition temperature
θU Room temperature
κ Curvature of the points laid in the axis bar, shear correction factor
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µ Fluid viscosity
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σ Stefan–Boltzmann’s constant, normal stress
τ Tangential stress
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Ω Domain
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Tensors

Symbol Description
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D Conductivity tensor, constitutive matrix
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F Deformation gradient
F r Deformation gradient in the reference position
f Load tensor
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m Moment resultant
mr Moment resultant in the reference position
n Normal vector, stress resultant
nr Stress resultant in the reference configuration
P First Piola–Kirchhoff stress tensor
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Q Rotation tensor
q Heat flux vector
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t Traction tensor
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v Velocity tensor
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γ Total deformation tensor
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G Discrete gradient operator of the pressure
GT Discrete divergence operator
K Conductivity matrix, tangential stiffness matrix
KR Radiosity matrix
Kg Geometric term of the tangential stiffness matrix
Km Material term of the tangential stiffness matrix
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ψp Approximation functions of pressure
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ψv Approximation functions of velocity
ψθ Approximation functions of temperature
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Chapter 1

Introduction

1.1 Context

The increasing high performance requirements of most recent civil engineering struc-
tures motivates the use of new materials, whose behaviour during the structural lifespan
conditions has to be studied in depth. Among these materials, glass fibre reinforced poly-
mer (GFRP) profiles are starting to be used relatively often in civil construction as they
offer several advantages when compared to traditional materials, namely in what concerns
strength, self-weight, insulation properties, maintenance and durability. Although they
also offer competitive life-cycle costs, their use is still restricted due to well-founded con-
cerns about their fire behaviour. This issue is yet to be addressed in a comprehensive
manner and has hampered the widespread use of GFRP profiles in buildings, where con-
struction elements must have adequate fire reaction behaviour and sufficient fire resistance.

The mechanical performance of GFRP composites decreases when they are exposed to
high temperatures, mainly due to the decomposition of the organic matrix. When heated
to temperatures ranging between 100-200 ◦C, these composites start to soften, creep and
distort, suffering considerable strength and stiffness reductions due to the glass transition
of the resin. Subsequently, at around 300-500 ◦C, the organic matrix decomposes, releasing
heat, smoke, soot and toxic volatiles. These fire reaction properties of GFRP (a flammable
material) may prevent their use for certain applications and conditions. However, fibre
reinforced polymer (FRP) materials also present some advantages under fire conditions,
e.g., low thermal conductivity (composites are very good heat insulators) and reasonable
burn-through resistance, providing an effective barrier against flame, heat, smoke and
toxic gases (Dodds et al., 2000).

Fire reaction experiments (Brown and Mathys, 1997, Scudamore, 1994, Burchill et al.,
2005, Mouritz et al., 2006) enable a reasonable level of understanding of the fire reaction
properties of most common FRPs and show that both commercial flame retardants and
phenolic resins allow most flammability requirements to be fulfilled (Troitzsch, 1983, Lu
and Hamerton, 2002). However, even if changing the matrix formulation allows overcoming
fire reaction restrictions, in terms of fire resistance this approach does not allow achieving
the performance typically required for primary structural building elements in terms of fire
endurance (60-90 min). In fact, most flame retardants cause considerable reductions in the
mechanical properties of FRPs; similarly, the FRPs produced with phenolic resins usually
have lower resistance than those made of standard polyester or vinylester resins. It was
also shown that the thermal insulation and post-fire mechanical properties of phenolic and
polyester composites exposed to fire are similar (Dodds et al., 2000, Mouritz and Mathys,
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2001, Mouritz, 2002, 2003). In order to enable the use of composites in civil engineering
applications, the development of fire protection systems seems to be necessary to improve
their fire resistance. These fire protection systems can be classified as (i) passive (e.g.
calcium silicate boards or vermiculite/perlite cement based mortar) and (ii) active (e.g.
internal water cooling or sprinklers).

In what concerns passive protection, it has been proved that the use of intumescent
coatings/mats and ceramic mats improve the fire reaction properties of FRPs (Davies and
Dewhurst, 1999, Keller et al., 2005), namely regarding the post-fire mechanical perfor-
mance (Mouritz and Mathys, 2001, Mouritz, 2002, 2003). Sorathia et al. (1993) measured
significant improvements of the flexural strength retention and temperature profiles of
FRP laminates protected with a wide range of fire barrier treatments (ceramic fabric, ce-
ramic coating, different intumescent coatings, a hybrid of ceramic and intumescent coating,
silicone foam and a phenolic sacrificial layer). An active protection system consisting of
internal water cooling has been successfully tested with FRP tubes (Davies and Dewhurst,
1999). In the particular case of GFRP profiles, experimental campaigns were performed
by Tracy (2005) and Correia et al. (2010a,b, 2013b), indicating that passive and active
fire protection systems enable the considerable improvement of the fire reaction and fire
resistance behaviour of GFRP profiles. In these previous experiments, the water cooling
system was the most effective fire protection solution. However, since it is only applicable
to tubular shapes, the development of alternative protection systems for other structural
cross sections is necessary.

The structural response of an element/component subjected to fire has been tradi-
tionally assessed through specific fire tests, which, in general, are costly and unable to
predict the behaviour of the component when subjected to other fire scenarios (e.g. Kim
et al., 2008). In this context, the availability of mathematical models able to simulate
the performance of generic GFRP members under different fire situations is of paramount
importance.

The burning process of materials in general and of FRP composites in particular is
complex and involves chemical and physical changes. Heat transfer and fluid dynamic
theories are of fundamental importance as they allow evaluating the fire effect in the
structures and the calculation of temperatures and heat flux distributions in the construc-
tive elements. In order to numerically solve the differential equations deriving from the
aforementioned problems, the finite element method (FEM) constitutes an adequate tool
due to the following reasons:

• It is a powerful method for determining approximate (and accurate) solutions to a
large class of engineering problems, as for example, heat transfer, structural or flow
dynamics problems;

• it is applicable to problems with irregular or arbitrary geometries;

• once the boundary conditions and the finite element (FE) mesh are correctly defined,
it is relatively easy to implement; and

• it is simple to couple the thermal and mechanical behaviour of the profiles, calculat-
ing the transversal thermal response (using a two-dimensional model representing the
cross-section) and a longitudinal mechanical behaviour (adopting a one-dimensional
model).
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In recent studies, mathematical models started to be developed in order to repro-
duce the experimental results of fire resistance tests of structures with FRP components,
e.g., Keller et al. (2006c) and Nigro et al. (2011). In the same way, this thesis addresses
the study of the fire behaviour of GFRP profiles under fire exposure by developing an
in-house FE code that allows computing the thermomechanical behaviour of unprotected
and protected GFRP elements subjected to different fire exposures. Furthermore, the
numerical results obtained allow a deeper understanding of the heat transfer process in
GFRP cross sections.

1.2 Motivation and aims

As mentioned in the previous section, the widespread use of GFRP profiles in buildings
is still restricted due to their fire performance. Flame retardants and phenolic resins were
seen to induce significant improvements on the GFRP fire reaction properties, despite re-
ducing their fire resistance. The few studies addressing this subject suggest that adequate
fire protection systems need to be developed to allow the structural use of GFRP profiles
in buildings (Correia et al., 2015).

The effectiveness of both passive and active fire protection systems, nowadays well
established for steel structures, needs also to be evaluated to assess the structural use of
GFRP profiles in buildings. Based on this purpose, mathematical models able to predict
the thermal and mechanical behaviour of FRP structures need to be developed. Nowadays,
the FEM is one of the most used numerical tools to compute the mechanical behaviour
of structures and it was already used to evaluate the thermomechanical behaviour of
composites. In fact, several commercial software packages are available and are suitable
to develop FE models. However, for the problem studied in this thesis, which involves
different subjects (heat transfer, fluid dynamics and mechanical theories), only three-
dimensional FE models can be developed using commercial software. These models are
complex and their use presents the following disadvantages:

• The generation of compatible meshes can be laborious and difficult in the presence
of complex geometries;

• models that couple fluid dynamics, heat transfer and solid mechanics entail the
definition of boundary conditions of different origins;

• complex simulations involve the development of models with wide disparity in length
and time scales; and

• three-dimensional mechanical models do not directly return engineering quantities
required to structural design, i.e., axial forces, shear forces and moments.

The main target of this thesis is to develop a special-purpose FE code to carefully
assess the thermomechanical behaviour of GFRP profiles (with arbitrary cross sections)
subjected to fire, avoiding the difficulties previously mentioned.

In this context, the following objectives are defined for this thesis: (i) the development
of a FE code that allows simulating the thermal and structural behaviour of generic GFRP
beams and columns subjected to mechanical loads and fire exposure, considering the non-
linear and temperature-dependent thermophysical and mechanical properties of the GFRP
and fire protection materials, (ii) to numerically simulate the experiments developed within
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the Fundação para a Ciência e a Tecnologia (FCT) funded research project FIRE-FRP —
Fire Protection Systems for GFRP Pultruded Profiles (PTDC/ECM/100779/2008), using
the experimental data available regarding the thermophysical and mechanical properties
of the GFRP composite, and (iii) to assess the applicability of the FE code developed
in simulating the complete thermal response of tubular and I-profiles subjected to fire
exposures different than those tested.

1.3 Methodology

1.3.1 Preliminary comments

As mentioned, this thesis was developed in the frame of the FCT-funded research
project FIRE-FRP, which comprises experimental and numerical investigations regard-
ing the fire performance of pultruded GFRP profiles. This section first presents a brief
description of the experimental programme and then describes in more detail the method-
ology used for the mathematical modelling, the object of this thesis. Further information
regarding the experimental programme can be consulted in the following project reports:
Gomes et al. (2011, 2012c,b,a), Correia et al. (2013a) and Morgado et al. (2013d,c,b,a).

1.3.2 Experimental programme

The experimental programme centres on the study of the fire behaviour of protected
and unprotected GFRP profiles and includes the following tests: (i) dynamic mechanical
analysis, thermogravimetric and differential scanning calorimetry tests, to evaluate the
thermophysical and thermomechanical properties of GFRP and fire protection materials,
(ii) mechanical tests (tension, compression and shear loading) on GFRP laminates at
varying temperatures, in order to estimate the temperature-dependent material stiffness
and strength, (iii) fire reaction tests on GFRP profiles, and (iv) full-scale fire resistance
tests on loaded GFRP beams and columns.

The first objective of the experimental campaign was to evaluate the thermophysical
and thermomechanical properties of both GFRP and different fire protection materials,
namely: the glass transition temperature (θg), the GFRP temperature-dependent stiffness,
the polymeric matrix temperature of decomposition, the density, the thermal conductivity
and the specific heat capacity (the last three properties as a function of temperature).

In order to obtain the aforementioned properties, the following tests were performed:

1. Dynamic mechanical analysis (DMA): the results of these tests allow obtaining the
θg of the resin and the temperature-dependent stiffness relationship, following the
process of degradation of both the polymeric matrix and the fibre-matrix adhesion.

2. Thermogravimetric analysis (TGA) and differential scanning calorimetry tests (DSC):
the objective of these tests is to evaluate the mass and enthalpy changes in the mate-
rials as a function of temperature and the kinetic parameters describing the reactions
taking place in both the GFRP and the fire protection materials.

The second objective of the experimental programme was to provide the temperature-
dependent mechanical properties of the GFRP material in tension, compression and shear
at elevated temperatures. Small-scale tests have been carried out on GFRP laminates
according to the following procedure: (i) the specimens were heated uniformly until they
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reached a constant target temperature (ambient temperature, 60, 90, 120, 150, 200 and
220/250 ◦C) and, subsequently, (ii) a mechanical load was applied until failure. The load-
deformation curves and maximum loads were measured for the different temperatures and
types of loading (tension, compression and shear), providing the temperature and loading
dependent stiffness and strength curves.

Fire reaction tests were also performed at Instituto de Engenharia Mecânica e Gestão
Industrial (INEGI) to evaluate the fire reaction properties of GFRP profiles made of
polyester resin, either unprotected or protected with different fire protection materials.
This task is not detailed as the results obtained are not relevant for the modelling of the
fire resistance behaviour of GFRP beams and columns.

Finally, full-scale fire resistance tests were carried out at Instituto Superior Técnico
(IST) in the framework of the PhD thesis of Tiago Morgado (in course) to evaluate the
fire resistance properties of GFRP beams and columns, both unprotected and protected
with different passive and active systems. Two different cross-sections with similar prin-
cipal inertia moments were tested: square tubular section and I-section. In these tests
the efficacy of the different fire protection systems was studied in terms of temperature
distributions and mechanical responses of the GFRP members.

The tests were carried out using an intermediate-scale furnace with 6 gas burners
controlled by a computer and 3 internal thermocouples to record the air temperatures.

The temperature profiles and the evolution of midspan deflections, as well as the
fire resistances of loaded GFRP beams and columns submitted to fire were assessed. In
the columns tests, the axial elongation was also measured. These results were used to
evaluate the accuracy of the mathematical model in the simulation of the experimental
data. Tables 1.1 and 1.2 summarize the fire resistance tests carried out in GFRP beams
and columns, respectively.

The passive fire protection materials used in the beams were applied either in the
bottom surface (one-surface fire exposure) or in the bottom and lateral faces (three-surfaces
fire exposure) of the GFRP profiles. The materials used in the protection systems were:
agglomerated cork, rockwool, calcium silicate (CS) boards and intumescent (INT) mats
and coatings. The active fire protection system consisted of filling the cavity of the tubular
GFRP pultruded profile with circulating water.

In the case of the GFRP columns, one-surface and three-surfaces fire exposure con-
ditions have also been tested. The passive protection system comprised only CS boards,
while the active protection system consisted of filling the cavity of the tubular GFRP
pultruded profile with water, either stagnant or flowing (strictly, only the latter system is
active), which are identified in table 1.2 as (s) and (f), respectively.

For both GFRP beams and columns, two different load levels were considered causing
midspan deflections in the beams of L/400 and L/250 (L being the beam span) or axial
deflections in the columns of L/1500 and L/750 (L being the column length).

1.3.3 Thermomechanical modelling

The first objective of the thesis is the elaboration of a thermomechanical model to
compute the thermal and mechanical behaviour of GFRP beams and columns subjected
to fire. This task comprised, mainly, the following four stages of development:

1. Thermal two-dimensional FE model to compute the temperature and flux fields in
the cross section of a beam or column (conjugate heat transfer problem).
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Cross section Experimental series Fire exposure Fire protection Load level

Square tubular
section

S1 1-face

Unprotected —
Unprotected

Cork
Rockwool

CS 11.7 kN
INT (L/400)
INT

Water cooling

S2 3-faces

Unprotected —
Unprotected

CS 11.7 kN
Water cooling (L/400)

S3 1-face Unprotected 18.7 kN
CS (L/250)

I-section

I1 1-face Unprotected 7.4 kN
CS (L/400)

I2 3-faces Unprotected 7.4 kN
CS (L/400)

I3 1-face Unprotected 11.7 kN
CS (L/250)

Table 1.1: Experimental campaign for GFRP beams.

2. Mechanical one-dimensional FE model to simulate the generalized displacement field
of a beam or column and the associated generalized stresses.

3. An uncoupled thermomechanical FE code.

4. A final unique code that allows performing the above mentioned different analyses.

All the codes are implemented in MATLAB (2012) using double-precision floating
point in the calculations.

In the first stage, a two-dimensional thermal model was implemented by developing the
following three numerical codes: (i) FE heat transfer code, (ii) fluid dynamics FE code for
non-isothermal fluids, and (iii) coupled heat transfer/fluid dynamics FE code (conjugate
heat transfer problem).

The heat transfer FE code allows computing the temperature and heat flux fields. The
thermophysical properties of the material (thermal conductivity, density, specific heat
capacity and emissivity) and the convective heat coefficient can either be considered as
temperature-dependent or not. The following boundary conditions can be imposed: pre-
scribed temperature, prescribed heat flux and convective and radiative heat flux; the last
three items can coexist in the same boundary. The code allows performing both steady
state and transient analyses.
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Cross section Experimental series Fire exposure Fire protection Load level

Square
tubular
section

S1 1-face

Unprotected
CS 55 kN

Water cooling (s) (L/1500)
Water cooling (f)

S2 3-faces

Unprotected
CS 55 kN

Water cooling (s) (L/1500)
Water cooling (f)

S3 1-face Unprotected 110 kN
CS (L/750)

I-section

I1 1-face Unprotected 25 kN
CS (L/1500)

I2 3-faces Unprotected 25 kN
CS (L/1500)

I3 1-face Unprotected 50 kN
CS (L/750)

Table 1.2: Experimental campaign for GFRP columns.

The GFRP cross section to be analysed is either tubular or I-shaped. In both cases
the computation of the radiative heat flux exchange between the walls of the cavity is
required. This type of heat transfer is only not relevant in unprotected I-shaped profiles
subjected to fire in three-surfaces.

The cross section cavity highlights the influence of the enclosed air on the temperature
field of the GFRP material. Therefore, a fluid dynamics FE code was developed, consider-
ing that the fluid is viscous, incompressible and non-isothermal. The physical properties
of the fluid (viscosity and density) were assumed as constant and, in order to artificially
introduce the changes in the fluid density due to the temperature, the Boussinesq ap-
proximation was included. The thermal properties of the fluid were also set as constant.
Furthermore, the Streamline Upwind/Petrov–Galerkin (SUPG) method was implemented
to avoid possible instabilities in the temperature and velocity fields due to the convection.

The final thermal model is constituted by a combination of the two FE codes previously
defined, where the resulting system of equations is obtained adopting a coupled scheme
and is solved using the Newton–Raphson method.

In a second stage, a one-dimensional FE code to compute the mechanical behaviour of
the beams and columns subjected to mechanical loads and fire exposure was implemented,
according to the following steps: (i) the implementation of a FE code considering the geo-
metrically exact beam theory and the Reissner–Simo kinematic assumptions, and (ii) the
inclusion of the effect of the temperature in the previous code. The mechanical properties
of the GFRP material are considered nonlinear and temperature-dependent. The code
developed allows computing the displacement, stress and strain generalized fields.

In a third stage, once the temperature field and the beam/column behaviour were
defined, the thermomechanical model was implemented using an uncoupled scheme where,
for each time step, the temperature and the displacement field are computed. In a first
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step, the temperature profile in the cross section is obtained using the thermal model
and in a second step, the mechanical code computes the displacement field at the current
time step using the temperatures previously computed. Furthermore, because several
analyses may be performed using the same cross section (namely, for varying beam/column
lengths), a second option was implemented. In this second case, the temperature field is
first computed for all time steps and stored in a worksheet data-file and, subsequently,
the displacement field is computed for all the time steps, using as input the temperature
fields from the mentioned data-file generated.

In a fourth and final stage, a unique FE code was assembled allowing to perform the
following analyses:

• Two-dimensional steady state and transient heat transfer analyses in plane elements,
taking into account the thermophysical properties of the materials (GFRP and fire
protection), considered to be either constant or temperature-dependent;

• two-dimensional fluid dynamic analyses in steady state and transient regime, whether
accounting or not for the advection-diffusion in a fluid;

• two-dimensional heat transfer/fluid dynamic analyses;

• one-dimensional mechanical analyses, considering mechanical loads and temperature
gradients; and

• uncoupled thermomechanical analyses.

The second objective of the thesis is the application of the model proposed to reproduce
the thermal and mechanical response of the GFRP beams and columns tested in the
laboratory by Morgado et al. (2013b,a) and described in section 1.3.2. In order to carry
out this task, the following steps were defined:

1. Definition of the thermophysical properties of the GFRP and CS materials. The
variation of the density of the GFRP with temperature is estimated using the data
obtained from the experimental programme (TGA tests), while the thermal prop-
erties of the GFRP were computed using different mathematical models available
in the literature. The thermophysical properties of the CS were provided by the
manufacturer.

2. Evaluation of the mechanical properties of the GFRP as a function of temperature,
using the experimental tests defined in the project.

3. Definition of the boundary conditions and characteristics of the model. In what
concerns the boundary conditions, to simulate the fire exposure of a given surface
and the heat exchange between the surface and the surrounding environment, three
possibilities were considered: (i) prescribed temperature, (ii) convective and radia-
tive heat flux and (iii) adiabatic. Regarding the simulation of the heat transfer in
the cavity, four scenarios were simulated: (i) the cavity is insulated, (ii) there is
radiative heat exchange between the cavity walls, (iii) there is convective natural
convection due to the presence of air in the cavity, and (iv) natural convective heat
transfer and exchange of radiative heat flux coexist in the cavity.

4. Validation of the final model by comparing the numerical results obtained with the
experimental ones.
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5. Numerical simulations of the beams and columns tested and comparison between
the numerical and experimental temperature and displacement fields.

The third objective of the thesis consists of assessing the applicability of the model
to reproduce the complete thermal response of GFRP profiles subjected to fire exposures
different from those used in the experimental programme of the FIRE-FRP project. These
applications were set by considering possible fire scenarios during the service life of a
GFRP profile. Fire durations of 30 min or 60 min were set as goals, as these correspond
to particular fire resistance ratings defined in building codes.

1.4 Thesis outline

The present document is organized in eight chapters, whose content is briefly summa-
rized as follows.

Chapter 1 corresponds to the introduction of the thesis, describing its context, moti-
vation, aims and methodology.

Chapter 2 provides an overview about composite materials, addressing their evolution
and applications in engineering, with special attention being given to GFRP compos-
ites. The combustion process and the development of a fire are also briefly introduced.
Subsequently, a brief state of the art review about the fire performance of composites is
presented, divided in two parts: (i) the fire behaviour of GFRP laminates, and (ii) the
fire behaviour of GFRP structural elements (beams, columns and slabs), including the
numerical modelling of such behaviour.

Chapter 3 describes a transient nonlinear finite element formulation to evaluate heat
transfer problems. It includes the computation of prescribed, convective and radiative heat
fluxes. A coupled formulation using the radiosity equation is also introduced to compute
the radiative heat flux exchange in enclosures.

Chapter 4 presents a transient nonlinear finite element formulation to solve the Navier–
Stokes equations coupled with the advection-diffusion equation, allowing to obtain the
velocity, pressure and temperature fields of the fluid. As the fluid is considered incom-
pressible, the Boussinesq approximation is introduced to consider the variability of the
density due to temperature changes.

Chapter 5 presents a compact finite element procedure to solve conjugate problems
where conduction, convection, radiation and natural convection are involved. The radiosity
is also included in the system of equations. In fact, this formulation can be considered as
a compact treatment of the formulations presented in the preceding chapters 3 and 4.

Chapter 6 describes a one-dimensional finite element formulation to solve structural
mechanics problems using a geometrically exact beam theory. The advantages of this
theory with respect to the classical theories is illustrated with different numerical examples.

In chapters 3 to 6 benchmark examples are presented in order to verify the numerical
codes implemented. The numerical results are compared with the analytical solution of
the problem or, in case there is no analytical solution, with numerical results available in
the literature or calculated using a commercial FE software.

Chapter 7 presents the main results of this thesis, namely the temperature and displace-
ment fields obtained from the numerical simulations of the thermomechanical behaviour
of GFRP profiles (beams and columns) subjected to fire. This chapter is divided into five
parts:
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• Calibration of the thermal model, in which the thermal properties of the GFRP are
assessed, as well as different aspects related to the numerical simulations: spatial
and temporal discretization, boundary conditions considered and influence of the
singularities in the radiosity field in the results.

• Comparison between the numerical and experimental temperature results obtained
for GFRP profiles subjected to fire, both protected and unprotected.

• Calibration of the mechanical model, in which the mechanical properties of the
GFRP are assessed, as well as the spatial discretization and the temperature distri-
bution along the bars and the boundary conditions defined.

• Comparison between the numerical and experimental mechanical results obtained
for GFRP beams and columns subjected to fire, both protected and unprotected.

• Further applications of the thermal code for different fire scenarios from those used
in the experimental tests, in which the applicability of the model to retrieve the
thermal response of the profiles for durations of at least 30 min and 60 min was
assessed.

Finally, chapter 8 summarizes the main conclusions of the work developed and presents
suggestions for possible future developments and improvements of the finite element model
proposed.

Complementary numerical information and additional benchmark solutions are pre-
sented in the appendixes.



Chapter 2

State of the art

2.1 Overview of composite materials

Composite materials result from the combination of two or more materials which to-
gether produce desirable properties that cannot be achieved with any of the constituents
alone (Reddy, 2004c). In this context, fibre reinforce polymer (FRP) materials are non-
homogeneous and anisotropic (orthotropic) composites that contain fibres in a polymeric
matrix (bulk). Chawla (1998) and Chung (2011) present a discussion about the different
types of fibres and matrices, respectively, used nowadays.

The concept of FRP materials was first developed in the 1930s. However, it was only
in the early 1940s that FRP composites, as we know them today, appeared with the pro-
duction of fibreglass reinforced plastics (Pilato and Michno, 1994). Initially, the use of
FRP composites was limited to automotive, aeronautic and naval applications (Correia,
2008); however, in the last years, their application in several engineering areas has in-
creased. In fact, the advantages and potential shown by these new materials (light weight,
corrosion resistance and high strength) in those early applications created a growing inter-
est in researchers and the composites industry, namely in understanding their behaviour.
In addition, it also promoted the improvement of the effectiveness of the manufacturing
processes, with new production techniques being developed, for example, the pultrusion
process.

Figure 2.1 shows different applications of FRP composites in naval and automotive
industries and in offshore structures.

(a) KRI Klewang boat (PT.
Lundin Industry Invest,
2014).

(b) Offshore structures (Team One
Composites, 2014).

(c) Suzuki Swift S1600 (Suzuki,
2014).

Figure 2.1: Applications of composite materials.

11
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Figure 2.2: Distribution of materials in the commercial Boeing 787 Dreamliner (Campbell,
2006).

An increasing use of composites in aircraft construction has been observed in recent
years with the aim of reducing weight and obtaining fuel savings. Figure 2.2 illustrates
the distribution of the materials used in the Boing 787 Dreamliner, which comprises 50%
in weight of composite materials (website of the Federal Aviation Administration, 2014).

Regarding civil engineering, the first known applications of FRP composites date back
to the late 1960s/early 1970s, being remarkable: (i) the dome structure in Benghazi in
1968 and (ii) the roof structure at Dubai airport in 1972 (Zoghi, 2014).

Nowadays, the (lack of) durability of traditional materials and the need for higher con-
struction speed are stimulating the development of innovative structural materials. In this
respect, FRP materials and GFRP profiles have great potential, due to their high mechan-
ical performance, lightness, good insulation and low maintenance requirements (Keller,
2003, Bank, 2006). Consequently, their use has been increasing consistently since the
1960s (Adams et al., 2003). Figure 2.3a shows the Eyecatcher Building, built in Basel
(Switzerland) in 1998, which is the tallest (15 m) residential/office building with load-
bearing GFRP members in the world. Figure 2.3b shows a view of the GFRP bridge built
in Kolding (Denmark) in 1997. The book edited by Nicolais et al. (2011) illustrates some
possible future applications of these composite materials.

The GFRP profiles dealt in this thesis are produced by pultrusion, which is a process
where a continuous fibrous reinforcement (in the present case, E-glass fibres) is impreg-
nated with a polymeric matrix (in this case, isophthalic polyester) and continuously con-
solidated into a solid composite (Campbell, 2006). This process is cost-effective in the
production of long constant cross section elements, but it can be costly when used in a
high volume process due to the time required for production. Figure 2.4 shows some of
the most typical cross sections of GFRP pultruded profiles used in civil engineering.

Despite of the above mentioned advantages, the fire performance of composites could
be inadequate in civil engineering applications. In fact, Mouritz et al. (2009) identify fire
performance as one of the most significant factors affecting the wider use of composites
in engineering structures. Among the disadvantages of FRPs, it is possible to identify
an inadequate fire reaction: standard FRP materials are flammable, not preventing fire
ignition, flame spread and excessive generation of smoke. Furthermore, there are well-
founded concerns regarding their fire resistance behaviour, which has been object of a
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(a) GFRP Eyecatcher Building
Basel, Switzerland (Composite
Construction Laboratory, 2014).

(b) Bridge at Kolding, Den-
mark (Fiberline Composites,
2014).

Figure 2.3: Applications of composite materials in civil engineering.

Figure 2.4: Typical GFRP pultruded profiles (Campbell, 2006).

relatively limited number of studies. Therefore, there has been a growing research interest
about the behaviour of FRP materials when subjected to thermal loads (Dodds et al.,
2000, Kharbari et al., 2003, Mouritz and Gibson, 2006). In several international scientific
committees (e.g. IABSE WG2, IIFC, ASCE, ACI440-FRP), the fire behaviour of FRPs
has been recognized as one of the most critical research issues.

The current chapter first presents an introduction about the different stages of develop-
ment of a fire, describing also different analytical time-temperature curves typically used to
simulate the evolution of the temperatures in a room during a fire scenario. Subsequently,
the chapter provides an overview of the literature available regarding the fire performance
(fire reaction and fire resistance) of FRP composites, with special attention being given
to the mathematical models developed to simulate and characterize such behaviour.
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2.2 Combustion process and development of a fire

Combustion is a mass and energy conversion process where chemical bond energy is
transformed into thermal energy (Peters, 2011). The combustion initiation involves the
coexistence of an oxidizing agent and a fuel source in a sufficient concentration to ignite
as a reaction of an energy source that heats the fuel until it reaches its ignition tempera-
ture. The combustion can be flaming (with turbulent flames developing) or smouldering
(without flames).

The development of a fire is a complex phenomenon that depends on several factors
and is difficult to parametrize. However, it is possible to define different stages of de-
velopment. The objective of the present section is to illustrate the basic concepts of fire
and flame. Further information is provided in Babrauskas and Grayson (2006), Quintiere
(2006) and Drysdale (2011).

Figure 2.5 illustrates (black curve) five stages of development that can be identified
in terms of enclosure temperatures (Karlsson and Quintiere, 2000, Mouritz and Gibson,
2006, Correia, 2008):

1. Ignition: is an exothermic process that increases the ambient temperature greatly.
This process can be initiated by pilot ignition (e.g. by flaming a match) or by
spontaneous ignition (accumulation of heat in the fuel).

2. Growth: in the case of flaming combustion, which is the case dealt in this thesis, this
process occurs very rapidly, releasing elevated rates of energy and generating toxic
gases. A priori, the growth period does not depend on the combustion material,
only on the fuel and oxygen available.

3. Flashover: is a rapid transition from the growth period to the fully developed fire,
where the combustible material reaches its ignition temperature and bursts into
flames. This stage is not always present in fire and the compartment temperature is
typically considered around 500-600 ◦C.

4. Fully developed fire: in this stage the heat released to the room and the temperature
attain their maxima. The energy generated is often limited by the oxygen available.
The gas temperature in the room is often in the range of 700-1200 ◦C.

5. Decay: occurs when the fuel and the combustible materials become consumed. In
this moment, the energy released is reduced and, as a consequence, the room tem-
perature declines.

The fire development can also be divided as a function of the mass flows in and out
through the room openings during the fire (Karlsson and Quintiere, 2000). It is also
pertinent to notice that the fire event becomes especially complex when polymer composite
materials are involved, because they confer a source of fuel and can influence significantly
the evolution of the temperature, size and spread of the flame (Mouritz and Gibson, 2006).

In structural design, time-temperature curves are adopted to represent the post-flashover
development of fires. Figure 2.5 depicts two different curves available in standards: (i) Eu-
rocode 1 (1995) parametric curves (red and blue, different curves depending on the degree
of ventilation of the room) and (ii) ISO 834 (1975) curve (green). The fire design curves
are independent of various parameters that can affect the fire intensity, as for example
ventilation areas or building thermal properties. The importance of these curves stems
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Figure 2.5: Idealized description of the fire development (black) and different fire design
curves (red, green and blue). Figure adapted from Karlsson and Quintiere (2000).

from the fact that they are used in fire resistance tests and numerical simulations, even if
they do not represent exactly the development of a fire and some of them do not consider
a reduction of temperatures corresponding to the decay stage.

2.3 Fire behaviour of GFRP composites

2.3.1 Thermal decomposition of composites in fire

The combustion of composite materials is a complex process where thermal, chemical
and physical transformations are involved. The current section presents a general descrip-
tion of the decomposition process underwent by polymeric composites at high tempera-
tures (additional information is available in Mouritz and Gibson, 2006). Schematically,
the combustion process of composites can be divided in four stages (Hilado, 1990):

• Heating: in this phase, the polymeric matrix absorbs the energy required to reach
its decomposition temperature.

• Decomposition: the composite continues absorbing energy to break the covalent
bonds of the organic compounds. Several decomposition products are generated,
namely solid residue (char and ash), partially decomposed polymer (various liquids),
entrained particles (smoke) and incombustible and combustible gases.

• Ignition: it is the instant when the combustion begins.

• Combustion: it corresponds to the final phase where the exothermic reactions be-
tween the combustible gases and the oxidizing agent (usually oxygen) provide the en-
ergy required for the total decomposition of the composite. This process constitutes
a self-propagating cycle, as the combustion generates heat, then more decomposition
occurs and more fuel is created (combustible gases), thus allowing the continuity of
the fire.
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Figure 2.6: Schematic description of the burning process throughout the thickness of a
composite laminate (adapted from Tracy, 2005, Mouritz et al., 2009).

The combustion of a polymeric composite involves different processes, that Mouritz
et al. (2009) summarize as follows:

• Thermal processes: involve heat transfer from the fire to the composite, heat gener-
ation/absorption of the polymer matrix and the organic fibres, convective heat flux
due to the flow of the gases generated from the composite into the fire, heat gener-
ation in the char and fibres zone and, finally, heat generation due to the ignition of
the flammable volatiles.

• Chemical processes: involve phase transformations, viscous softening, melting, de-
composition and volatilisation of the polymer matrix and organic fibres, as well as
the formation, growth and oxidation of char and char-fibre reactions.

• Physical processes: include thermal expansion/contraction, thermally-induced strains,
internal pressure build-up due to the formation of volatile gases, formation of gas-
filled pores, matrix cracking, fibre-matrix interfacial debonding, delamination damage,
surface ablation and, finally, softening, melting and fusion of fibres.

• Failure processes: are complex phenomena depending on temperature, heat flux and
duration of the fire and magnitude and type of load.

During the combustion process, the composite material suffers different types of damage,
being possible to distinguish different zones as a function of the decomposition degree. Fig-
ure 2.6 illustrates the evolution of the fire damage in a composite laminate (right hand
side of the figure) and the various heat transfer processes that occur through the thickness
of the laminate (left hand side).

During a fire, the temperature of the composite increases progressively. When the
polymer matrix attains the glass transition temperature (usually around 100-200 ◦C), a
change from the initial hard and brittle condition to a viscous state occurs. During this
stage of the heating process no relevant chemical reactions take place. At 200-300◦C,
a chemical reaction known as pyrolysis initiates and the material starts decomposing,
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releasing volatile gases (flammable and non-flammable) and smoke. The decomposition of
the polymeric matrix commonly occurs between 300-600◦C.

Regarding the E-glass fibre1 reinforcement, the fibres used in the GFRP composite
studied in this thesis, the softening and viscous flow starts at 830◦C, while melting only
occurs at 1070◦C. Hence, they do not interfere significantly in the decomposition process
as this is mainly controlled by the decomposition of the matrix. However, a significant
reduction of the mechanical properties of the fibres can be observed for temperatures
around the softening temperature (Correia, 2008), and this is relevant for the tensile
behaviour of the composite.

2.3.2 Fire reaction performance of composites

According to Mouritz and Gibson (2006), fire reaction is used to describe the flamma-
bility and combustion properties of a material that affect the early stages of fire, generally
from ignition to flashover. The most relevant fire reaction properties encompass the time
to ignition, the smoke toxicity, the heat release rate, the flame spread rate and the oxygen
index.

The time to ignition is the period of time required for a material to ignite and to sustain
flaming combustion when subjected to a certain radiant heat flux. GFRP laminates can
ignite in a few minutes when exposed to radiant heat fluxes of 25 to 50 kW/m2 (Correia
et al., 2010a).

The smoke toxicity and density are two parameters of important relevance in buildings
design due to their influence in the possibility of human survival during a fire.

The heat release rate (HRR) is considered the most important fire reaction property
as it represents the best indicator of the fire hazard of a material. The HRR is a quan-
titative measure of the amount of thermal energy released — during the thermochemical
decomposition processes — by a material per unit area when exposed to a fire, simulated
by radiating a constant heat flux or temperature (Mouritz and Gibson, 2006). The HRR is
usually defined by means of two parameters: the peak HRR (PHRR, maximum instanta-
neous value of heat released) and the average HRR (AHRR, average value of heat released,
typically during a period of time between 3 and 5 minutes after the PHRR is attained).
Composites with low values of peak and average HRR are recommended for engineering
applications. Figure 2.7 illustrates a typical time-HRR curve for a composite material
reinforced with non-combustible fibres. The presented curve (Mouritz et al., 2006), cor-
responds to a glass/vinylester composite subjected to a constant heat flux of 50 kW/m2.
The PHRR is situated at around 400 ◦C due to the decomposition of the matrix, that
starts at 350 ◦C.

The flame spread rate refers to the velocity of the flame front propagating in the surface
of a combustible material.

Finally, the oxygen index is the minimum oxygen content in the air required to maintain
the flaming combustion of a material and it is usually used to quantify the flammability
of organic polymers and composite materials.

1E-glass fibres are the most commonly used in the reinforcement of FRP materials. The letter E refers
to their electrical insulation.
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Figure 2.7: Typical heat release rate curve for a composite reinforced with non-combustible
fibres (adapted from Mouritz et al., 2006, Mouritz and Gibson, 2006).

2.3.3 Thermophysical properties of GFRP composites

The characterization of the thermophysical properties of FRP composites has been
thoroughly pursued in the last years. In the literature, there is reference to many ex-
perimental studies which usually are complemented with numerical expressions to predict
the evolution of the thermal properties as a function of temperature. This knowledge is
essential to obtain accurate predictions of the thermal response of composite laminates.
However, as discussed later, there is still limited information about some properties that
are relevant for the thermomechanical response of FRP composites. The anisotropic be-
haviour of FRP composites and its combustibility make very challenging to determine the
thermophysical properties as a function of temperature.

The thermophysical properties of composites relevant to their thermal behaviour com-
prise the density (ρ), the thermal conductivity (k) and the specific heat capacity (cp) of
both the virgin and the char (fully decomposed) material and the emissivity (ε). They
are variable with temperature due to the physical-chemical reactions that occur when the
material is subjected to high temperatures.

Dimitrienko (1995) presented a model to estimate the thermomechanical behaviour
of composites under high temperatures by considering the variation of the thermophys-
ical material properties with temperature. The model incorporates the physicochemical
processes of pyrolysis and charring of the composite. Figure 2.8 illustrates the typical
variation of the conductivity, the heat deformation, the density and the gas permeability
as a function of the temperature for a glass/epoxy composite.

According to this model, the density reduction occurs, mainly, due to the decompo-
sition and volatilisation of the polymeric matrix and, hence, when the matrix is totally
decomposed, the density remains constant and equal to the density of the inorganic com-
ponents of the composite. Furthermore, a minor loss of mass takes place at 100 ◦C due
to the water evaporation. The evolution of the composite mass with the temperature
can be obtained experimentally through DSC/TGA analysis (as done in the project that
frames the present thesis). Several mathematical models are available in the literature,
most of them being based in the Arrhenius decomposition kinetics, e.g., Bai et al. (2008a)
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Figure 2.8: Temperature-dependent properties of the glass/epoxy composite, being K3 the
gas permeability, ε the heat deformation, λ the thermal conductivity and ρ/ρ0 the relative
density (adapted from Dimitrienko, 1995).

and Lattimer et al. (2011). The variation of the density with time is given by equations
in the following form,

∂ρ

∂t
= − (ρv − ρc)

(
ρ− ρc
ρv − ρc

)n
Ae−E/Rθ (2.1)

where n is the order of reaction, A is the pre-exponential factor, E is the activation energy,
R is the universal gas constant and θ is the temperature, with v and c corresponding to
the virgin and char material, respectively.

The composite thermal conductivity progression follows three phases: (i) a slight rise
due to the intrinsic behaviour of the matrix, (ii) a decrease due to the formation of pores
originated by the decomposition of the matrix, and (iii) a stabilization when the pyrolysis
process is finished and the material is composed basically of fibres.

Regarding the evolution of the specific heat capacity with temperature, two important
increases are observed at (i) 100 ◦C, due to the water evaporation, and (ii) between 250
and 400 ◦C, due to the endothermic decomposition of the matrix, while for the remaining
temperature ranges the specific heat capacity remains approximately constant.

The literature offers several mathematical models to predict the evolution of the ther-
mophysical properties of composites. Samanta et al. (2004) presented a model to compute
the thermal conductivity based in the rule of mixtures where the volume of fibres and ma-
trix is related without considering the thermal expansion and the concentration of gases.
The equation proposed is,

1
k

= Vf
kf

+ (1− Vf )
km

(2.2)

where Vf represents the volume of fibres and the subscripts f and m correspond to the
fibres and the matrix, respectively. For the specific heat capacity, the following equation
is proposed:

1
cp

= Vf
cpf

+ (1− Vf )
cpm

(2.3)

In both expressions, the influence of the humidity evaporation is considered.
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Regarding the emissivity of the GFRP, Samanta et al. (2004) proposed a linear varia-
tion between 0.75 and 0.95 for temperatures ranging from 20 ◦C to 1000 ◦C.

Samanta et al. (2004) reported empirical curve-fit polynomial equations to compute
the thermal conductivity and the specific heat capacity as a function of temperature.
Subsequently, Tracy (2005) improved the previous model by adding the effect of the total
loss of matrix at around 830 ◦C. During the combustion, the burnt material can confer
a protection to the virgin material, but when the decomposition is in an advanced stage
of development, the char material dissociates and only the fibres remain, these having
a five times higher thermal conductivity compared to the matrix. In this model, the
evaporation of the water and the concentration of gases in the pores are not considered.
In the modelling of the specific heat capacity, the dehydration of the material and the
endothermic decomposition of the matrix are considered. However, only numerical values
of thermal conductivity and specific heat capacity are reported based on experimental
measurements and no analytical expressions are proposed.

Lua et al. (2006) presented a temperature and mass dependent heat diffusion model to
characterize the temperature and mass dependent heat conduction in a composite lami-
nate. In this work, analytical expressions are proposed to evaluate the variation of thermo-
physical properties with temperature. These expressions are validated using experimental
results.

Several analytical and mathematical models consider composite laminates exposed to
heat or fire divided into two layers as a function of the degradation underwent by the
material: virgin (v) and char (c). They usually estimate the thermal conductivity and the
specific heat capacity during the decomposition process as a combination of the properties
corresponding to virgin (ρv, kv, cpv) and char (ρv, kc, cpc) material.

Based on this concept, Bai et al. (2007) developed a decomposition model for GFRP
composites subjected to fire. Temperature-dependent mass variation is obtained using
a decomposition model of the resin, whose kinetic parameters have to be determined
experimentally (for example, from TGA tests). The thermal conductivity of the composite
is evaluated as,

1
k

= Vv
kv

+ Vc
kc

(2.4)

and, similarly, the specific heat capacity is given by,

cp = cpv fv + cpc fc (2.5)

where fc and fv are, respectively, the mass fraction of char and virgin material expressed
as fc = mc/m and fv = mv/m, where m is the composite instantaneous mass. In the
same way, Vc and Vv are, respectively, the relative volume of char and virgin material with
respect to the composite instantaneous volume.

Lattimer et al. (2011) presented a decomposition model where the mass fraction of
virgin material is calculated considering constant volume and is given by,

F = ρ− ρc
ρv − ρc

(2.6)

and the thermal conductivity and the specific heat capacity are calculated as:

k = F kv + (1− F ) kc (2.7a)
cp = F cpv + (1− F ) cpc (2.7b)
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Advanced models developed recently start to include the effect of fire-induced damage,
as for example the formation of delamination or cracking, in the variation of the thermo-
physical properties of the composite material.

Regarding the mechanical behaviour, the thermal expansion coefficient represents the
expansion or contraction of a composite due to the conduction of heat and this physical
property is also dependent on temperature. Furthermore, as composites are anisotropic
materials, this coefficient presents different values in the longitudinal, transversal and
through-thickness directions.

Mouritz and Gibson (2006) presented an overview of the numerical and experimental
studies carried out to evaluate the thermal expansion of a glass-filled polymer composite
(glass fibres embedded in a phenolic resin). Figure 2.9 illustrates the typical variation of
the thermal expansion coefficient as a function of temperature, for two different heating
rates. Four stages can be identified:

• Stage I: the composite initially expands due to the thermal expansion of the fibres
and polymeric matrix and due to the vaporization of the traces of moisture. In this
phase, the temperatures are lower than the glass transition temperature of the matrix
and, hence, the amount of expansion can be determined by the linear coefficient of
thermal expansion of the virgin material.

• Stage II: a sharp expansion of the composite can be observed when the pyrolysis
of the matrix commences. This process continues while the temperature increases
and the generation of gases persists. The expansion peak is reached when the cor-
responding rate of diffusion of the gases out of the material surpasses the rate of
production. It can be observed that the peak depends on the heating flux and it
is greater for the higher heating rate, as it also presents an elevated gas generation
rate.

• Stage III: an abrupt contraction is observed immediately after the expansion peak
due to the pyrolysis gases released and the consequent reduction of pressure in the
composite. Subsequently, a slow contraction can be observed due to char formation
and to the elastic recovery of the solid residue.

• Stage IV: an additional contraction or expansion may occur after 1000 ◦C due to
structural changes in the composite resulting from char reactions.

Figure 2.9 confirms that the thermal expansion coefficient depends strongly on the
temperature and, hence, in a generic composite element where a thermal gradient exists,
the material expansion will be non-uniform in the through-thickness direction, i.e., the
expansion will be greatest at the hot surfaces (until the beginning of stage III). However,
for very high temperatures following the resin matrix decomposition, further (positive)
temperature variation may cause contraction in the composite material.

Tant et al. (1985) reported graphical results about the variation of the thermal expan-
sion coefficients of glass/phenolic composites at different temperatures. These values were
obtained experimentally by testing cylindrical (6 mm outer diameter and 50 mm long)
composite samples heated at different heating rates2. Figure 2.10 shows the fractional
length change for two glass/phenolic composites that differ only in the curing scheme of

2During the tests, it was guaranteed that all the material was at the same temperature, thus avoiding
the possible influence of thermal gradients on the results.
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Figure 2.9: Fractional length change of a glass/phenolic composite as a function of tem-
perature for two different heating rates (adapted from Mouritz and Gibson, 2006).

(a) Composite 1. (b) Composite 2.

Figure 2.10: Fractional length change of two glass/phenolic composites vs. temperature
for various heating rates (Tant et al., 1985).

the matrix. The plots demonstrate that variations in the method of preparation of the sam-
ples have a dramatic effect upon the expansion behaviour. Furthermore, the magnitude of
the maximum fractional length changes can be very high. However, it is very likely that
the experimental results measured are dependent on a scale factor, as the samples tested
had very reduced dimensions (compared with the structural members tested in the present
research project). Consequently, Tant et al. (1985) could have obtained higher thermal
expansion coefficients, these values not being directly applicable to full-scale composite
elements as beams, columns or slabs.

The mathematical model proposed in Tant et al. (1985) was originally developed
by Buch (1982). The thermal expansion of a composite is evaluated as a combination of



2.3. Fire behaviour of GFRP composites 23

the thermal expansion coefficient of the char material, αc, and of the virgin material, αv,

1
L0

∂L

∂t
= αv fv

∂θ

∂t
+ αc fc

∂θ

∂t
+ ∆η ∂fv

∂t
(2.8)

where L is the length at each instant, L0 is the initial length, t is the time and ∆η is the
dimensionless pyrolysis expansion factor, which accounts for the rapid expansion/contrac-
tion during the pyrolysis reactions.

Tracy (2005) also proposed an analytical model to compute the thermal expansion
coefficient based on the rule of mixtures. As the material is anisotropic, three expressions
were reported to calculate the thermal expansion in the longitudinal (axis x1), transversal
(axis x2) and through-thickness (axis x3) directions,

α1 = Ef αf Vf + Em αm Vm
E

(2.9a)

α2 = (1 + νm)αm Vm + (1 + νf )αf Vf − α1 (νf Vf + νm Vm) (2.9b)
α3 = αm Vm + αf Vf (2.9c)

where f and m refer to the fibres and the matrix, respectively, E is the Young’s modu-
lus and ν is the Poisson ratio. The values reported by this author for a glass/polymer
composite are α1 = 12.6 · 10−6 K−1, α2 = 21.8 · 10−6 K−1 and α3 = 37.0 · 10−6 K−1. How-
ever, this formulation only allows computing the thermal expansion coefficient at ambient
temperature.

2.3.4 Thermal analysis of GFRP composites

The main objective of the thermal analysis of GFRP composites (both numerical and
experimental) is to study their thermal response, namely determining the temperature
profiles in the material when subjected to elevated temperatures.

The challenge of numerical thermal models is to reproduce the temperature evolution
of FRPs under fire and the complex material processes (thermal, chemical, physical and
failure) that occur during fire exposure.

There are several thermal models reported in the literature differing, mainly, in the
processes modelled. One of the most frequently cited thermal model is the one proposed
by Henderson et al. (1985). The formulation is based on the thermochemical models
previously developed to wood, as for example Kung (1972) and Kanury (1972). The pro-
posed thermal model analyses the temperature distribution within a composite laminate
considering: (i) the heat transfer in both the virgin and the char material, (ii) the de-
composition of the matrix and the fibres (when organic), and (iii) the diffusion of the
decomposition gases from the reaction zone through the char zone. The one-dimensional
nonlinear equation reported is,

ρ cp
∂θ

∂t
= ∂

∂x1

(
k1

∂θ

∂x1

)
− ṁg cpg

∂θ

∂x1
− ∂ρ

∂t
(Qp + h− hg) (2.10)

where ρ, cp and k1 are, respectively, the density, the specific heat capacity and the con-
ductivity coefficient of the composite in the considered direction, ṁg is the mass flux of
the pyrolysis gas flowing through the char structure, cpg is the specific heat of the gas,
Qp is the heat of decomposition at a reference temperature and, finally, h and hg are the
enthalpy of the composite and the gas, respectively. The first term of the left hand side
describes the temporal variation of the temperature, the first term of the right part of the
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equation is the heat conduction term, the second one represents the endothermic effect of
the resin decomposition and the last one describes the small cooling effect that happens
when the volatile decomposition products pass through the thickness of the laminate. In
this kind of models, the resin decomposition process is usually modelled by an Arrhenius
relationship (Mouritz and Gibson, 2006), which can cause numerical instabilities.

Florio Jr. et al. (1991) presented a more sophisticated one-dimensional transient ther-
mal model which considers heat transfer conduction in a solid, decomposition gas due
to the temperature, solid mass loss, pressure rise due to the formation of volatile gases,
permeability and porosity of the material, gas mass flux and storage and, finally, the
expansion of the material.

Sullivan and Salamon (1992a) presented a finite element model to simulate the ther-
mochemical decomposition of polymeric materials considering, as the previous model, heat
transfer conduction, pyrolysis in the matrix and fibres, flow of the decomposition gases,
thermal expansion/contraction of the material and the pressure rise. The referred study
uses the thermochemical model to generate the input data for mechanical analysis and,
as a result, the validation of the model is carried out by means of the experimentally
measured strain variations depending on the temperature (Sullivan and Salamon, 1992b).

More recently, Dimitrienko (1995) developed a mechanical-mathematical model for
ablating composites 3 where the composite is considered a porous multiphase media with
phase transformations and chemical reactions when heated. The innovation of the model is
the simulation of the influence of the physical-chemical transformations in the stress-strain
state of the material.

Recently, a wealth of literature was published about thermal models, in which the
numerical results are validated with experimental data, as for example, Dodds et al. (2000),
who analysed the thermal response of laminated GFRP panels under fire exposure.

Looyeh and Bettess (1998) presented a transient nonlinear FE model and analysed the
thermal performance of a composite panel by considering temperature-dependent thermal
properties, testing different mixed boundary conditions at the unexposed surface. This
study is based on a previous work, Looyeh et al. (1997). The results reported are the
temperature profiles in a polyester-based GFRP panel and the density distribution in the
panel.

Miller and Weaver (2003) presented a numerical tool to estimate the temperature
distribution through a multi-layered specimen subject to convection and, for the first
time, radiation boundary conditions.

Lua et al. (2006) reported a temperature and mass dependent heat diffusion model
based on Henderson et al. (1985) to characterize the temperature and mass dependent
heat conduction, considering the decomposition of the material and the vapour migration.

Milano and Gibson (2009) reported a new model to predict the thermal field in FRP
composites exposed to high heat flux in one side of the laminate, known as apparent thermal
diffusivity (ATD) model. It represents a simplified approach to model the temperature
evolution in a composite avoiding the use of the Arrhenius decomposition relations. The
decomposition of the resin and the changes in the specific heat capacity and thermal
conductivity of the composite are considered.

Riccio et al. (2013) presented a three dimensional thermochemical model to study the
thermal behaviour of a composite plate. The code was implemented in a commercial
software and allows computing the mass loss rate, the heat release rate and the total heat

3Composites that can experience removal of mass from the surface by thermochemical and mechanical
processes.
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released during the heating source application. The composite plate comprises GFRP
layers with different fibre orientations. The orthotropic thermal conductivities and the
specific heat capacity in each layer are estimated with the rule of mixtures and the degree
of decomposition function. The mathematical model was validated by comparing the
numerical results with experimental data taken from the literature.

2.3.5 Fire resistance of GFRP composite laminates

Fire resistance refers to the ability of a composite material to retain its mechanical
integrity (Mouritz and Gibson, 2006), i.e., preserving its mechanical properties, such as
the stiffness, the creep resistance and the strength during the fire exposure and after the
fire has been extinguished (post-fire mechanical behaviour).

The mechanical properties of composite laminates under fire conditions can be ob-
tained experimentally through tension, compression and shear tests. The main objective
of these tests is to determine in a particular specimen each elastic parameter (Young’s
modulus and shear modulus) or strength value (tensile, compressive and shear strength)
as a function of temperature. However, this data is not available for all composite sys-
tems. Alternatively, it can be considered that the mechanical properties fit relationships
similar to that shown in figure 2.11 (Mouritz and Gibson, 2006). In the depicted curve,
PU represents the mechanical property value at ambient temperature, which experiments
a rapid reduction after a certain critical temperature (θcr) is reached. At the mechanically
observed glass transition temperature (θg,mech), the mechanical property of the composite
is reduced to 50%. This temperature is typically about 15-20 ◦C below the glass tran-
sition temperature (θg) measured by thermal techniques (e.g. DSC). Finally, after the
glass transition temperature, a residual value of the mechanical property (PR) remains.
Hence, according to this curve, the reduction of the mechanical properties happens before
the glass transition temperature, which is lower than the decomposition temperature of
thermosetting resins. It has been demonstrated that this kind of curves describes with
reasonable accuracy the variation with temperature of matrix-dominated properties of
composite materials (Mouritz et al., 2006).

This raises the problem of fitting a suitable relationship between a given mechanical
property and temperature, mainly between the critical and glass transition temperatures.
In the literature it is usual to find polynomial series (Liu et al., 2006), Weibull distribu-
tions (Mouritz and Gibson, 2006) and tanh functions (Gibson et al., 2006). In this way,
the actual approach to model the mechanical response of composites subjected to fire uses
empirical curve-fit equations to calculate the reduction of the mechanical properties at
different points throughout the composite section based on its thermal profile (Mouritz
et al., 2009). The different thermomechanical models differ in the mechanical theories
considered to calculate the mechanical response and to predict failure of the composite.

Most of the literature consulted includes the development of a thermomechanical model
to predict the evolution of the mechanical properties as a function of temperature. These
models are calibrated using experimental data and usually they are complemented with a
thermochemical model, as the former is required to estimate the temperature distribution
in the composite (Tracy, 2005).

One of the first thermomechanical studies carried out on composites was presented
by Springer (1984). The paper describes a thermochemical model in conjunction with a
thermomechanical model. The mechanical model allows calculating changes in the tensile,
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Figure 2.11: Typical reduction of the mechanical properties of composite materi-
als (adapted from Mouritz et al., 2006, Mouritz and Gibson, 2006).

compressive and shear strengths as a function of the fire exposure time, but no experi-
mental data was used to validate the numerical results.

Griffis et al. (1986) described a mathematical model for predicting the integrity loss
of composite structures subjected to simultaneous intense heating and applied mechanical
loads. A nonlinear two dimensional FE model was developed to represent the degradation
of mechanical properties with stepped functions at discretized temperature points. The
FE model uses the Mindlin theory of plates and considers the effects of surface ablation,
re-irradiation losses and temperature-dependent thermophysical properties. The Tsai-Wu
failure criterion was also included. In this case, the numerical results were validated with
experimental data.

McManus and Springer (1992a,b) presented the first model combining thermal, chemi-
cal and mechanical fire phenomena. The interaction between mechanically-induced stresses
and the pressures created due to the generation of decomposition gases was considered.
The numerically computed stress state of the composite was compared with experimental
results.

Gibson et al. (2004) developed a thermomechanical model that couples with the two-
layer post-fire mechanical model of Mouritz and Mathys (2001), in which the laminate
is divided into two regions as a function of the decomposition degree (virgin and char
zones). This model allows calculating the thickness of the virgin material, which was
also verified using experimentally measured values. The results obtained with the model
are the stiffness and strength in tension or compression, the flexural stiffness, the Euler
buckling load and the apparent stress at which buckling occurs, and the failure load and
corresponding apparent stress.

Subsequently, Gibson et al. (2006) presented an upgraded version of the model de-
scribed in Gibson et al. (2004), where the degradation of mechanical properties between
the critical and glass transition temperature is fitted by a semi-empirical function that
considers the effects of both viscous softening and decomposition of the polymer matrix.

Liu et al. (2006) performed an experimental and numerical study about the response of



2.3. Fire behaviour of GFRP composites 27

GFRP columns under axial compression and thermal loads obtained by keeping one side
of the specimen exposed to heat flux. As a result, a non-uniform temperature distribution
through the thickness was observed. A model based on polynomial equations was devel-
oped to represent the degradation of the elastic moduli (elasticity and shear modulus) with
the temperature. One interesting effect of the non-uniform temperature applied is that the
neutral axis moves away from the centroid of the cross section, resulting in an additional
moment due to the eccentric loading, which would tend to bend the structure away from
the heat source. Hence, it was concluded that the thermal moment tends to bend the
structure away or towards the heat source when respectively low or large temperatures
are developed. On the contrary, the moment induced due to the eccentric loading always
tends to bend the structure away from the heat source.

Bausano et al. (2006) developed an experimental investigation regarding the lifetime
of E-glass vinylester composite laminates subjected to centric compression and one-sided
simulated fire exposure. A finite element analysis was performed to simulate the behaviour
of the laminates and different values of the elastic modulus as a function of temperature.

Feih et al. (2007a) reported an experimental and numerical study about the thermal
decomposition, softening and failure of polymer matrix laminates under combined com-
pressive loading and one-sided heating. A thermochemical and thermomechanical coupled
model was presented for predicting the temperature field and the time to failure of lami-
nates.

The evaluation of the structural response of composites subjected to fire under tension
is more complicated than under compression, because both matrix and fibres softening
and failure have to be analysed. Feih et al. (2007b) presented an investigation about the
thermomechanical response of fibreglass laminates under tension and one-sided heating.
An average strength model was developed considering the matrix and the fibres contri-
butions. The model presented does not consider the effects of the thermal strains, pore
formation, delamination and fibre-matrix debonding.

Bai et al. (2008a) developed thermochemical and thermomechanical models in which
the composite is considered as a mixture of materials that are in a glassy, leathery to
rubbery or decomposed state4. The mechanical properties of the mixture are determined
by the content and the property of each state. The equations presented are based on
the Arrhenius equation and they allow predicting the temperature-dependent E-modulus,
G-modulus, viscosity and effective coefficient of thermal expansion. The model is struc-
turally validated in Bai et al. (2008b,c).

Correia et al. (2013b) reported an experimental investigation that addresses the me-
chanical characterization of GFRP laminates under tension, compression and shear loads
at temperatures varying from 20 to 250 ◦C. The load-deflection curves, stiffness, failure
modes and the ultimate strength are evaluated. Different empirical models available in
the literature are used to estimate the tensile, shear and compressive strengths of GFRP
pultruded material as a function of temperature.

As mentioned, the fire resistance of a composite also comprises its post-fire behaviour.
Accordingly, the mechanical properties of composite materials shall be quantified after
the event of a fire or exposure to elevated temperature. The experimental studies carried
out in the last years reveal that the post-fire properties of a composite depend on the
fire temperature, heating time, load condition and matrix decomposition properties. In

4According to Bai et al. (2008a) four different states (glassy, leathery, rubbery and decomposed) and
three transitions or processes (glass transition, leathery-to-rubbery transition and decomposition) can be
defined.
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this context, Mouritz and Mathys (2001) and Mouritz (2002) proposed a two-layer model
to compute the mechanical properties of fire-damaged composite materials. Analytical
expressions that consider the properties of the fibre-char and virgin materials are also
reported. The validation of the model was carried out with experimental data measured
in a set of tests performed on laminates subjected to a range of heat flux and heating time
conditions.

2.4 Fire behaviour of GFRP structures

In the present section, a literature review about the thermal and mechanical analyses
of full-scale GFRP structures is reported.

Miller and Weaver (2003) reported an analytical tool to compute the thermal behaviour
of composites and multi-layered systems. Convection and radiation boundary conditions
are modelled, being the inclusion of radiation a novel feature in the analysis of composite
structures. The results reported were verified with a commercial FE software.

Keller et al. (2005, 2006a) presented an experimental study about the thermal re-
sponse of FRP laminates and unloaded cellular FRP components in which an internal
liquid cooling system was used. Results showed that cellular FRP components subjected
to the ISO 834 (1975) fire conditions and liquid cooling can satisfy the fire resistance
rating of 90 minutes required by the Swiss building code (Swiss Society of Engineers and
Architects, 1997) for structural members of multi-storey buildings. Keller et al. (2006b)
presented the calculation of the thermo-physical properties of the GFRP material based
on experimental data obtained from full-scale fire tests on loaded and unloaded slabs.
Moreover, a numerical study of the post-fire behaviour using the two-layer and the three-
layer models was reported. Keller et al. (2006c) presented a numerical simulation of the
thermomechanical behaviour of the GFRP slabs using the FEM, where the thermal and
the mechanical properties of the material were considered temperature-dependent. A two
dimensional FE thermochemical model was developed to predict the temperature progres-
sion in the liquid-cooled and non-cooled slab components. The thermomechanical model
presented consists of a three dimensional FEM that predicts the measured midspan deflec-
tions and axial strains under serviceability loads (only in the liquid-cooled case) during the
fire exposure. It uses as input the temperatures computed with the thermochemical model
following a coupled scheme. Both models were validated with the experimental results.
The thermomechanical model was able to predict the hot face temperatures, which, as
the authors mention, are very difficult to experimentally measure. An important aspect
for the present thesis is that the modelling of the heat exchange in the cavity was carried
out considering simply free convection: the air temperature was set as 20 ◦C and the
convective heat transfer coefficient was considered. In this paper the authors mentioned
that in the empty cells:

a large amount of heat was transferred from the lower to the upper face sheet
through convection and radiation. In order to properly simulate this effect,
however, a complex modelling of the air including computational fluid dynamics
(CFD) would have been necessary.

The solution adopted is justified because the main objective of the paper was to present
a model to reproduce the thermal and mechanical behaviour of liquid-cooled slabs, where
only forced convection occurs in the cells. In this context, no literature addressing the
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simulation of natural convection and radiation in enclosed spaces of composite sections
was found.

Bai and Keller (2009) developed a study about the liquid-cooling fire protection sys-
tem applied to columns. The GFRP tubular columns were subjected simultaneously to
thermal and mechanical loads. The objective of the study was to maintain the mate-
rial temperature below the critical glass transition temperature using the liquid-cooling
system. Different flows of water were tested. The experimental thermal and mechani-
cal results were reproduced using thermal and strength degradation models. The models
used were previously described in Bai et al. (2008a). Regarding the thermal simulation,
a transient one-dimensional heat transfer in the through-thickness direction was assumed
and the resulting system of equations was solved using the finite difference method. The
boundary condition considered between the GFRP interior wall of the tube and the wa-
ter was forced convection. Regarding the mechanical simulation, a compressive strength
degradation model was employed in which it was assumed that, at a certain temperature,
the FRP material can be modelled as a mixture of materials that are in different states
(glassy, leathery and decomposed).

Correia (2008) presented a fire resistance experimental study about the thermal and
mechanical behaviour of tubular GFRP beams when subjected to fire and mechanical
loading (four point bending). Several protection systems, both passive and active, were
also tested in order to evaluate their effectiveness. Specifically, calcium silicate boards,
vermiculite/perlite based mortar, intumescent coating and water cooling were tested. The
experimental results obtained were later published in Correia et al. (2010b).

Bai et al. (2010) presented thermochemical and thermomechanical models of the beams
tested by Correia (2008), using the models described in Bai et al. (2007, 2008a,b). The
main objective of this study was to reproduce numerically the beneficial effects of passive
fire protection systems and, thus, to propose a model that can be used for the selection
and design of passive fire protection systems. The thermal behaviour of the tubular cross
section was reproduced by performing a transient one-dimensional heat transfer analysis,
where the thermophysical properties of the materials are temperature-dependent. In this
model, only heat transfer in the bottom flange of the cross section was modelled by dis-
cretizing it into 23 layers. The resulting system of one-dimensional equations was obtained
using the finite difference method. The heating of the lower face (GFRP or passive fire
protection material) was modelled by means of a variable prescribed temperature accord-
ing to ISO 834 (1975), while in the upper face convective and radiative heat transfer was
considered with a constant ambient temperature equal to 20 ◦C and a convective heat
transfer coefficient equal to 2 W/m2 K (determined by minimizing the differences between
the experimental and modelling temperatures). In the case of GFRP profiles protected to
fire with a water cooling system, the boundary condition in the upper face was set as a
convective heat flux with a convective heat transfer coefficient equal to 18 W/m2 K. Fig-
ure 2.12 shows the complete geometry of the cross section and the simulated flange with the
boundary conditions described above (θa represents the ambient temperature and θ is the
prescribed temperature). The mechanical response was computed using the Timoshenko
beam theory, where the E-modulus was evaluated as a combination of the E-modulus in
the top flange, bottom flange and web. These moduli take different values as they are
temperature-dependent (the reduction of the G-modulus with temperature was also con-
sidered). The mathematical model was validated using the experimental results reported
in Correia (2008) and, according to the authors, the modelling approach is applicable to
structural GFRP profiles incorporating either passive or active fire protection systems.
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Figure 2.12: GFRP cross section modelled in Bai et al. (2010).

The previous one-dimensional heat transfer model was later extended to a two dimen-
sional heat transfer model with the work of Fernandes (2009). A finite element formu-
lation using a commercial software was presented to reproduce the thermal behaviour of
the GFRP profiles tested by Correia (2008). The complete square tubular section was
modelled considering the following boundary conditions: (i) convective and radiative heat
fluxes in the bottom and top face of the cross section, and (ii) radiative heat flux on the
walls of the cavity. Hence, in this work no convective heat flux was considered in the
cavity. The dissertation also presents an analysis of the thermophysical properties of the
GFRP estimated through three analytical models: Samanta et al. (2004), Tracy (2005)
and Bai et al. (2007). No mechanical analyses were carried out.

Kodur and Ahmed (2010) presented an investigation where the strategy adopted to
simulate the thermal (2D) and mechanical (1D) behaviour of beams is similar to the one
used in the present thesis. The paper presents a coupled mechanical and thermal FE model
to evaluate the performance of concrete beams strengthened with carbon fibre-reinforced
polymer (CFRP) laminates subjected to flexural loads and fire conditions. The thermal
model consists of a two-dimensional FE code, where the thermophysical properties of the
constituent materials are temperature-dependent. The heat transfer between the fire and
the beam is modelled by considering convective and radiative heat flux. The mechanical
model consists of a one-dimensional FE code that uses as input the temperature field
computed previously with the thermal model. The strains on each material (concrete,
steel and CFRP) are evaluated considering different phenomena, e.g., mechanical loading,
temperature gradient in the cross sections, creep and transient effects. Subsequently, the
stresses and the resultant forces in each element are computed and used to check the
force equilibrium. An iterative procedure is repeated until equilibrium, compatibility and
convergence criteria are satisfied. The model does not include the relative slip between
concrete and CFRP or between concrete and steel rebars. The numerical results were
compared with experimental data and a very good agreement was reported.
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2.5 Concluding remarks

The literature review shows that the experimental and numerical study of the fire
performance of composites is a complex task. Comprehensive mathematical models that
attempt to address all the thermal, mechanical and chemical phenomena are still to be
developed. Nevertheless, several models that consider some of those phenomena are avail-
able and can be classified as thermochemical, thermomechanical and post-fire mechanical
models.

The literature also shows that a recent progress took place concerning the development
of thermochemical and thermomechanical models to evaluate the fire behaviour of FRP
composites. However, most of them assume that weakening is caused solely by matrix
softening, not taking into account other damaging processes, e.g., pore formation and de-
lamination. Furthermore, most of the studies referred focus on the compressive behaviour
without addressing in similar depth the tensile and shear responses. Hence, further anal-
ysis integrating all softening processes and thermally-induced strains involved in tensile,
compressive and shear loading are to be developed.

Regarding the fire response of full-scale GFRP structural elements (as for example,
beams, columns or slabs), very few studies presented results of fire resistance tests and
the corresponding numerical simulations. Consequently, only a few thermomechanical
models simulating the thermal and mechanical responses of GFRP structural elements
were developed; they usually constitute simple thermal and mechanical models that, in
general, are not able to reproduce the gross geometrical and thermal changes that occur
under long fire exposures.

In the particular case of the thermomechanical simulation of tubular GFRP profiles,
no thermal models that consider simultaneously the radiative and convective heat transfer
in the cavity of the cross section were found. Most of the thermal models do not include
important effects, such as the delamination and loss of reinforcement layers, that are
relevant when beams or columns are exposed to fire during long periods. The mechanical
models available are based on classical beam theories that do not include the geometrical
nonlinearities of the deformation process and are not able to evaluate large displacements
and rotations.

In the last years, an important increase in the use of GFRP profiles for civil engineering
and buildings applications was observed. However, the (few) experimental data available
indicates that unprotected GFRP structural components may present fire endurances be-
low 30 minutes, this period of time being insufficient for most building applications. Hence,
most of the literature reviewed point out the need of developing efficient fire protection sys-
tems in order to increase the use of these composites in building construction (Buchanan,
2002). In this sense, reliable mathematical models that enable the design of fire-protected
FRP components still need to be developed, this being the main motivation and objective
of the present thesis.





Chapter 3

Conduction heat transfer and
radiative heat exchange between
surfaces

3.1 Introduction

Heat transfer is a branch of the thermal sciences that studies the energy transport
between material bodies due to a temperature gradient. The following concepts can be
defined:

• Temperature: is a physical property of matter that quantitatively expresses the
degree or intensity of heat present in a substance or object (adapted from Maxwell,
1972).

• Heat: form of energy that can be transferred from one system to another as a result
of temperature difference (Çengel, 2003).

The mathematical modelling of the heat transfer process has been thoroughly ex-
plored in the past. The works of Kern (1950), Arpaci (1966), Patankar and Spalding
(1972) or Holman (1986) describe the heat transfer processes (conduction, convection and
radiation) and report the mathematical equations to quantify it.

The phenomenon of the radiative heat flux between walls was investigated by several
authors and it proved to be a relevant way to exchange heat between solids. Detailed
information about the radiative heat flux between walls can be found in the following ref-
erences: Sparrow (1962), Holman (1986), Li (2006), Bergheau and Fortunier (2008), Reddy
and Gartling (2010) and Lienhard IV and Lienhard V (2011).

The advancement of computers enabled the development of numerical methods in
structural applications. The most commonly used were the finite difference method (FDM)
and the finite element method (FEM) and both were quickly extended to non-structural
applications, as the heat transfer analyses. However, due to the difficulties in using the
FDM in irregular geometries and in unusual boundary conditions, many scientists contin-
ued to prefer the FEM. The works of, for example, Bathe (1996), Zienkiewicz et al. (2005a),
Lewis et al. (2004), Hughes (2000) and Reddy (2004b) contributed to the expansion of the
FEM.

In the present chapter, the heat transfer modes and the corresponding quantification
laws are presented. The finite element formulation developed in the present thesis to
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solve heat transfer problems in a solid is reported. Furthermore, the particular radiative
exchange between the walls of an enclosed cavity is analysed.

Numerical applications are presented to illustrate the notions introduced to simulate
steady state and transient heat transfer. The finite element code is verified by comparing
the solutions computed with the analytical solutions of the problem or with numerical
results available in the literature or calculated using a commercial FE software.

3.2 Modes of heat transfer and physical laws

3.2.1 Conduction

Conduction is the heat transfer mode that occurs when a temperature gradient exists
in a body. Conduction can be defined as the transfer of energy from the more energetic
particles to the less energetic particles of a substance due to interactions between them:
higher temperatures are associated with higher molecular energies, and when neighbouring
molecules collide an energy transfer occurs.

The heat transfer rate by conduction is proportional to the thermal gradient and it
can be calculated with Fourier’s law, which is expressed for the i-direction as follows,

qi = −kij
∂θ

∂xj
(3.1)

where qi is the heat flux in the i-direction, kij are the conductivity tensor components and
∂θ/∂xj is the temperature gradient in the j-direction. The minus sign in equation (3.1) is a
consequence of the fact that heat is transferred in the direction of decreasing temperatures
(i.e., from higher to lower temperatures).

The thermal conductivity is a positive material property that represents the material’s
ability to conduct heat (i.e., materials with high thermal conductivity will transfer large
amounts of heat over time and they are called good thermal conductors and materials with
low thermal conductivity will transfer small amounts of heat over time, being known as
poor thermal conductors or insulators). This property depends on the type of material
and it can change as a function of temperature.

3.2.2 Convection

The definition of convection is given by Lewis et al. (2004) as follows:

The transfer of heat from one region to another, due to such macroscopic
motion in a liquid or gas, added to the energy transfer by conduction within
the fluid, is called heat transfer by convection.

The convection heat transfer mode comprises two mechanisms: diffusion (due to ran-
dom molecular motion) and advection (due to macroscopic motion of the fluid). The
following types of convection can occur:

• Free or natural: when fluid motion occurs because of a density variation caused, for
example, due to pressure or temperature;

• Forced: when fluid motion is caused by an external force;

• Mixed: when natural and forced convection are present.
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For convective heat transfer, the rate equation is given by the Newton’s law of cooling,

qh = h (θa − θ) (3.2)

where qh is the convective heat flux, h is the convection heat transfer coefficient, θa is the
ambient temperature and θ is the body temperature.

The convection heat transfer coefficient is a physical property of the fluid — it depends
on the viscosity and thermal properties of the fluid, as referred in Holman (1986) — and
it is positive. This property is influenced by the surface geometry, the nature of the fluid
motion and it may depend on the temperature, as indicated in Incropera et al. (2006) and
Lienhard IV and Lienhard V (2011).

In equation (3.2), qh is defined positive when the heat transfer is produced from the
ambient to the body (i.e., θa > θ).

3.2.3 Radiation

Thermal radiation refers to the energy emitted by matter that is at nonzero tempera-
ture. This energy is transported by electromagnetic waves in all directions.

The maximum flux that can be emitted by radiation from an ideal black-body is given
by the Stefan–Boltzmann’s law,

qr(max) = σ θ4 (3.3)

where qr(max) is the maximum radiative heat flux, σ is the Stefan–Boltzmann’s constant1

and θ is the body temperature.
The heat flux emitted by a real surface, qr, is less than that emitted by a black surface

and is given by,
qr = ε σ θ4 (3.4)

where ε is a material property called emissivity, which provides a measure of how efficiently
a surface emits energy compared to a black-body. It can be temperature-dependent and
takes values in the range 0 ≤ ε ≤ 1.

The radiative net heat flux exchange between the solid and the ambient can be ex-
pressed as:

qr = ε σ
(
θ4
a − θ4

)
(3.5)

3.2.4 Heat radiation between surfaces

The heat flux due to the radiative heat interchange between two or more surfaces of
a cavity is accounted using a new parameter called radiosity. Following Bahrami (2005),
the radiosity, R, represents the total emitted and reflected radiation leaving a surface.

The radiative heat flux in a generic surface, e, can be expressed as,

qR = − εe

1− εe
(
σ (θe)4 −Re

)
(3.6)

where θe, Re and εe are, respectively, the temperature, the radiosity and the emissivity in
the surface e.

1In the SI unit system, the value of the Stefan–Boltzmann’s constant is usually expressed in watt,
metre and Kelvin, taking a value of σ = 5.669 · 10−8 W/(m2 K4). In this case, the temperature of the
body in equation (3.3) will be given in Kelvin.
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Figure 3.1: Schematic radiative exchanges among the surfaces of a cavity.

The radiosity in a gray2 and diffuse3 face is given by,

Re = σ εe (θe)4 + (1− εe)
n∑
k=1
k 6=e

∫
SkR

Rk
cosαe cosαk

π d2 dSkR (3.7)

where the angles αe and αk are defined for two generic faces, e and k — schematically
represented in figure 3.1 —, d is the distance from a point on SeR to a point on SkR and n is
the number of surfaces that intervene in the interchange of radiative heat flux. It is useful
to remark that the previous expression is valid for three-dimensional problems4, being d
the three-dimensional distance vector d = xk − xe and d its norm.

Equation (3.7) depends on the dimension of the space. Hence, in the following, two
notations will be used to denominate the dimension of the element where the radiative
heat exchange is applied: (i) SR to surfaces and (ii) ΓR to lines.

3.3 Heat transfer equation

The main objective of the conduction analysis is to determine the temperature distri-
bution in a medium. Once this temperature distribution is known, the heat flux at any
point may be computed from Fourier’s law (3.1).

The heat transfer equation is obtained by applying the principle of conservation of
the energy to a three-dimensional differential control volume considering the following
hypotheses:

1. Homogeneous solid;

2A surface is gray when its properties are independent from the wavelength.
3A surface is diffuse when its properties are independent of the direction.
4In the present thesis a two-dimensional heat transfer formulation is discussed. Hence, in the next

sections, the radiosity expression will be particularized for the two-dimensional space.
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2. constant density and specific heat transfer in the volume;

3. continuous medium.

The heat transfer equation is given by,

− div q +G = ρ cp
∂θ

∂t
(3.8)

where q is the heat flux vector, G is the heat generation per unit volume and time, ρ is the
density of the material and cp is the specific heat, which, similarly to density, depends on
the material and can vary with the temperature and space. The heat generation constant
will be positive when the body generates heat and negative when the body consumes it.

The heat flux q given by the Fourier’s law (3.1) can be rewritten as,

q = −D∇θ (3.9)

where D is the conductivity matrix that gathers the conductivity coefficients and ∇ is
the gradient differential operator.

The divergence of a generic vector, div f , is defined using the Einstein’s summation
notation as:

div f = fi,i (3.10)
The notation fi,i = (fi),i is introduced to represent the partial derivative of the ith com-
ponent of a generic vector with respect to the ith coordinate of the cartesian reference
system, ∂fi

∂xi
, defined with the base of vectors ei.

Considering the Fourier’s law (3.1) and taking the notation θ̇ = ∂θ
∂t , the heat transfer

equation becomes:
∂

∂xi

(
kij

∂θ

∂xj

)
+G = ρ cp θ̇ (3.11)

The solution of the equation (3.11) provides the temperature distribution in the body
and it can be particularized for the following cases when an isotropic material with constant
thermal conductivity (k = kij) is considered:

• The transient heat transfer equation is known as the Fourier-Biot equation,

∇2 θ + G

k
= 1
α
θ̇ (3.12)

where α=k/(ρ cp) is the thermal diffusivity of the material (it represents the velocity
of the heat propagation through a material) and ∇2 is the Laplace operator defined,
for a generic scalar field u, as:

∇2u = u,ii (3.13)
If there is no heat generation (G = 0), the previous equation is called the diffusion
equation and renders:

∇2 θ = 1
α
θ̇ (3.14)

• The steady state heat transfer is known as Poisson equation and is given by,

∇2 θ + G

k
= 0 (3.15)

and when there is no heat generation (G = 0), the equation is referred to the Laplace
equation:

∇2 θ = 0 (3.16)
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Figure 3.2: Boundary conditions of the heat transfer problem.

3.4 Strong form of the heat transfer problem

The heat transfer equation is a differential equation that requires boundary conditions
and an initial condition to be solved.

If Ω is the domain of the solution and Γ is the boundary contour (figure 3.2), the
following three types of boundary conditions can be defined:

• Dirichlet or essential condition: prescribed temperature on Γθ,

θ = θ on Γθ (3.17)

• Neumann or natural condition: prescribed heat flux on Γq,

qn = −q on Γq (3.18)

where qn is the heat flux in the n direction given by qn = qi ni and q is a heat flux in
the normal direction. This constant can assume a positive or negative value, where
the former means supplied heat and the latter subtracted heat.

• Robin condition: convective heat flux on Γh and/or radiative heat flux on Γr and
radiative heat exchange between walls on ΓR,

qn = −h (θa − θ) on Γh (3.19)
qn = −ε σ (θ4

a − θ4) on Γr (3.20)

qn = εe

1− εe
(
σ (θe)4 −Re

)
on ΓR (3.21)

Hence, in the current problem, the boundary is expressed as Γ = Γθ ∪ Γqn such that
Γθ ∩ Γqn = ∅ and Γqn = Γq ∪ Γh ∪ Γr ∪ ΓR. The convective and radiative heat fluxes can
simultaneously be present in the same contour, being possible that Γh ∩ Γr 6= ∅.

The initial condition can be expressed as,

θ0 = θ0 in Ω at t = t0 (3.22)

where t0 is the reference time and θ0 is the known initial temperature.
The strong form of the heat transfer problem is constituted by the nonlinear partial

differential governing equation, the mentioned boundary conditions for the physical system
and the initial condition.
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The classical formulation of the strong form for the transient heat transfer problem5

can be stated as,

,
Obtain θ ∈ Ω and R ∈ ΓR for each point x = xi ei ∈ Ω and t ∈ [t0, tf ] such that:

− div q +G = ρ cp θ̇ in Ω (3.23a)
θ = θ on Γθ (3.23b)
qn + q = 0 on Γq (3.23c)
qn + h (θa − θ) = 0 on Γh (3.23d)

qn + ε σ
(
θ4
a − θ4

)
= 0 on Γr (3.23e)

qn −
ε

1− ε
(
σ θ4 −R

)
= 0 on ΓR (3.23f)

θ0 = θ0 at t = t0 in Ω (3.23g)

where Ω = Ω ∪ Γ is the closure of the domain, tf is the final time.

3.5 Weak form

The weak form is the integral form of the strong formulation problem obtained by
multiplying equations (3.23) by an arbitrary virtual function, δθ, and integrating the
result over the domains on which they hold:∫

Ω
δθ
(
−div q +G− ρ cp θ̇

)
dΩ +

∫
Γq
δθ (qn + q) dΓq+

+
∫

Γh
δθ (qn + h (θa − θ)) dΓh +

∫
Γr
δθ
(
qn + ε σ

(
θ4
a − θ4

))
dΓr+

+
∫

ΓR
δθ

(
qn −

ε

1− ε
(
σ θ4 −R

))
dΓR = 0 (3.24)

Considering that θ and δθ are differentiable with respect to the space and applying
the divergence theorem and the integration by parts rule in equation (3.24), the final
expression of the weak form is obtained:∫

Ω

(
∇δθ · q − δθ ρ cp θ̇

)
dΩ +

∫
Ω
δθ G dΩ +

∫
Γq
δθ q dΓq +

∫
Γh
δθ h (θa − θ) dΓh+

+
∫

Γr
δθ ε σ

(
θ4
a − θ4

)
dΓr +

∫
ΓR
δθ

ε

1− ε
(
σ θ4 −R

)
dΓR = 0 (3.25)

Further information about the operations carried out can be consulted in appendix A.1.
In the previous expression, the thermophysical properties of the material (kij , ρ, cp and
ε) and the convective coefficient, h, may be temperature-dependent.

5The reader should notice that equation (3.7) is not included in the strong form of the problem even
if it has to be solved together in assemblage with the governing equation.
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Figure 3.3: Schematic radiative exchanges between the edges of a cavity.

The weak form of the radiosity equation will be obtained considering that the current
calculus surface is identified by e, while the remaining interacting surfaces (all the heat
radiative interchange faces) are generically designated by k.

Multiplying equation (3.7) by an arbitrary virtual function, δRe, dividing by (1− εe)
and integrating the result over the surface SeR, the respective weak form is obtained:

∫
SeR

δRe
Re

(1− εe) dSeR =
∫
SeR

δRe σ
εe

(1− εe) (θe)4 dSeR+

+
n∑
k=1
k 6=e

∫
SeR

∫
SkR

δReRk
cosαe cosαk

π d2 dSkR dSeR (3.26)

The particularization of equation (3.26) for a two-dimensional case can be consulted
in appendix A.2 and renders,

∫
ΓeR
δRe

Re

(1− εe) dΓeR =
∫

ΓeR
δRe σ

εe

(1− εe) (θe)4 dΓeR+

+
n∑
k=1
k 6=e

∫
ΓeR

∫
ΓkR
δReRk

cosβe cosβk
2 r dΓkR dΓeR (3.27)

where r is the norm of the two-dimensional distance vector given by r = xk − xe. Equa-
tion (3.27) is the weak form of the radiosity equation. Figure 3.3 shows schematically the
radiative heat interchange among the edges of an arbitrary two-dimensional closed cavity.

The reader should observe that equation (3.27) is not a mechanical law and its origin
is not a variational principle. As a consequence, the mentioned equation is not integrated
by parts and no boundary conditions are associated to it. In the case the radiosity is
constant over the surfaces, the expression (3.27) can be rewritten as,

δRe
Re

(1− εe) = δRe σ
εe

(1− εe) (θe)4 +
n∑
k=1
k 6=e

δRe F ek Rk (3.28)
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where F ek is the view factor6, which represents the proportion of radiation that leaves one
surface and strikes another, and can be computes as,

F ek = 1
ΓeR

∫
ΓeR

∫
ΓkR

cosβe cosβk
2 r dΓkR dΓeR (3.29)

or, in the case of closed two-dimensional cavities, using the geometrical expressions ob-
tained by the Hottel’s crossed string method (Bergheau and Fortunier, 2008). The ad-
vantage of equation (3.28) vs. equation (3.27) is that it is not necessary to compute
the complicated integrals involving cosines, as the view factor can be obtained using ge-
ometrical expressions or a catalogue where its value is reported for different common
configurations (Howell, 1982).

3.6 Spatial discretization and residual vector

In the finite element method, the domain Ω is divided into a set of subdomains
Ω(e) = Ω(e) ∪ Γ(e) called finite elements. Any geometric shape for which the approxi-
mation functions can be derived uniquely qualifies as an element.

The present formulation considers a two-dimensional domain and one-dimensional
boundaries dicretized with standard 2D and 1D isoparametric finite elements, respectively.

The independent unknowns, temperature and radiosity, are approximated over a typical
element, (e), by the following expressions,

θ(e) =
n∑
i=1

ψi θi = ψ(e)
θ θ(e) in Ω(e) (3.30a)

R(e) =
m∑
i=1

ψiRi = ψ(e)
R R(e) on Γ(e)

R (3.30b)

and, consequently,

δθ(e) = ψ(e)
θ δθ(e) in Ω(e) (3.31a)

δR(e) = ψ(e)
R δR(e) on Γ(e)

R (3.31b)

where θ(e) and R(e) are, respectively, the elemental nodal vector of temperatures and ra-
diosities7 , ψ(e)

θ (ξ1, ξ2) =
[
ψ1 ψ2 ... ψn

]
is the matrix that gathers the two-dimensional

nodal shape functions, defining n as the number of nodes of the element where the tem-
perature is approximated and, finally, ψ(e)

R (ξ1) =
[
ψ1 ψ2 ... ψm

]
is the matrix that

gathers the one-dimensional nodal shape functions, being m the number of nodes of the
side element where the radiosity is approximated. In the in-house code developed in this
thesis, equal order shape functions are used to approximate both temperature and radios-
ity. Further information about the finite element method and the shape functions and
their derivatives can be consulted in the appendixes B.1 and B.2 .

6It is also referred in the bibliography as radiation form factor, shape factor, angle factor and configu-
ration factor.

7A notation conflict exists as, in this case, a capital letter is being used to define a vector and not a
matrix.
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In the following, it is assumed that the heat generation in the domain, the heat flux
vector on the static boundary and the ambient temperature on the convective and radiative
boundaries can be expressed over an element as,

G(e) = ψ(e)
θ g(e) in Ω(e) (3.32a)

q(e) = ψ(e)
θ q(e) on Γ(e)

q (3.32b)

θ(e)
a = ψ(e)

θ θa
(e) on Γ(e)

h ∪ Γ(e)
r (3.32c)

where g(e), q(e) and θa(e) are the nodal values of G(e), q(e) and θ(e)
a , respectively. Replacing

the mentioned spatial discretizations into the weak form (3.25) of the heat transfer problem
one obtains, term by term,

∫
Ω(e)

∇δθ(e) · q(e) dΩ(e) = −δθ(e)T
∫

Ω(e)
B(e)T
θ D B(e)

θ dΩ(e) θ(e) (3.33a)

−
∫

Ω(e)
δθ(e) ρ cp θ̇

(e) dΩ(e) = −δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇

(e) (3.33b)∫
Ω(e)

δθ(e)G(e) dΩ(e) = δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e) (3.33c)∫

Γ(e)
q

δθ(e) q(e) dΓ(e)
q = δθ(e)T

∫
Γ(e)
q

ψ
(e)T
θ ψ

(e)
θ dΓ(e)

q q(e) (3.33d)∫
Γ(e)
h

δθ(e) h
(
θ(e)
a − θ(e)

)
dΓ(e)

h = δθ(e)T
∫

Γ(e)
h

ψ
(e)T
θ hψ

(e)
θ

(
θ(e)
a − θ(e)

)
dΓ(e)

h (3.33e)∫
Γ(e)
r

δθ(e) ε σ
(
θ(e)4
a − θ(e)4

)
dΓ(e)

r =

= δθ(e)T
∫

Γ(e)
r

ε σψ
(e)T
θ

((
ψθθ

(e)
a

)4
−
(
ψ

(e)
θ θ

(e)
)4
)

dΓ(e)
r

(3.33f)

∫
Γ(e)
R

δθ(e) ε

1− ε
(
σ θ(e)4 −R(e)

)
dΓ(e)

R =

= δθ(e)T
∫

Γ(e)
R

ε

1− ε ψ
(e)T
θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

dΓ(e)
R

(3.33g)

where D is the conductivity matrix in a two-dimensional space and B(e)
θ gathers the

derivative of the shape functions with respect to the space coordinates. They are defined
as:

D =
[
k11 0
0 k22

]
(3.34a)

∇T =
{
∂/∂x1 ∂/∂x2

}
(3.34b)

B(e)
θ = ∇ψ

(e)
θ =

[
ψ1,1 ψ2,1 · · · ψn,1
ψ1,2 ψ2,2 · · · ψn,2

]
(3.34c)

Similarly, the spatial discretization of the temperature and radiosity will be replaced
into the weak form (3.27) of the radiosity weak form equation and, term by term, one
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obtains:

∫
Γ(e)
R

δR(e) 1
1− ε R

(e) dΓ(e)
R = δR(e)T

∫
Γ(e)
R

1
1− ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R R(e) (3.35a)

−
∫

Γ(e)
R

∫
Γ(k)
R

δR(e)R(k) cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R =

= −δR(e)T
∫

Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R R(k)
(3.35b)

−
∫

Γ(e)
R

δR(e) σ
ε

(1− ε) θ
(e)4 dΓ(e)

R = −δR(e)T
∫

Γ(e)
R

σ
ε

1− ε ψ
(e)T
R

(
ψ

(e)
θ θ(e)

)4
dΓ(e)

R (3.35c)

Hence, the elemental weak form of both problems can be expressed as:

−δθ(e)T
(∫

Ω(e)
B(e)T
θ D B(e)

θ dΩ(e) θ(e) +
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇

(e)−

−
∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e) −

∫
Γ(e)
q

ψ
(e)T
θ ψ

(e)
θ dΓ(e)

q q(e)−

−
∫

Γ(e)
h

ψ
(e)T
θ hψ

(e)
θ

(
θ(e)
a − θ(e)

)
dΓ(e)

h −

−
∫

Γ(e)
r

ε σψ
(e)T
θ

((
ψθθ

(e)
a

)4
−
(
ψ

(e)
θ θ

(e)
)4
)

dΓ(e)
r −

−
∫

Γ(e)
R

ε

1− ε ψ
(e)T
θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

dΓ(e)
R

)
= 0

(3.36a)

δR(e)T
(∫

Γ(e)
R

1
1− ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R R(e)−

−
n∑
k=1
k 6=e

∫
Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R R(k)−

−
∫

Γ(e)
R

σ
ε

1− ε ψ
(e)T
R

(
ψ

(e)
θ θ(e)

)4
dΓ(e)

R

)
= 0

(3.36b)

The equations (3.36) constitute a set of nonlinear equations that will be solved following
a coupled scheme. Since δθ(e) and δR(e) are arbitrary nodal vectors, the only possible
solution is,

r(e) = 0 (3.37)

where r(e) is the elemental residual vector given by,

r(e) =
{

r(e)
θ

r(e)
R

}
(3.38)
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and its components are:

r(e)
θ =

∫
Ω(e)

B(e)T
θ D B(e)

θ dΩ(e) θ(e) +
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇

(e)−

−
∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e) −

∫
Γ(e)
q

ψ
(e)T
θ ψ

(e)
θ dΓ(e)

q q(e)−

−
∫

Γ(e)
h

ψ
(e)T
θ hψ

(e)
θ dΓ(e)

h

(
θ(e)
a − θ(e)

)
−

−
∫

Γ(e)
r

ε σψ
(e)T
θ

((
ψθθ

(e)
a

)4
−
(
ψ

(e)
θ θ

(e)
)4
)

dΓ(e)
r −

−
∫

Γ(e)
R

ε

1− ε ψ
(e)T
θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

dΓ(e)
R

(3.39a)

r(e)
R =

∫
Γ(e)
R

1
1− ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R R(e)−

−
n∑
k=1
k 6=e

∫
Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R R(k)−

−
∫

Γ(e)
R

σ
ε

1− ε ψ
(e)T
R

(
ψ

(e)
θ θ(e)

)4
dΓ(e)

R

(3.39b)

Hence, the elemental set of nonlinear differential equations (3.37) can be written in the
following matrix form,

[
M(e) O · · · O
O O · · · O

] 
θ̇

(e)

Ṙ(1)

...
Ṙ(n)


+

+
[
K(e) O · · · O
O K(1)

R · · · K(n)
R

] 
θ(e)

R(1)

...
R(n)

−


f(e)

f(1)
R
...

f(n)
R


=


0
0
...
0

 (3.40)

where K(e) is the conductivity matrix, M(e) is the capacitance matrix, K(e)
R is the radiosity

matrix, f(e) is the nodal equivalent heat flux vector and f(e)
R is the nodal radiative heat

flux between the faces of the element. They can be expressed as:

K(e) =
∫

Ω(e)
B(e)T
θ D B(e)

θ dΩ(e) (3.41a)

M(e) =
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) (3.41b)

K(k)
R =


∫

Γ(e)
R

1
1−ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R if k = e

−
∫
Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R if k 6= e

(3.41c)
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f(e) =
∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e) +

∫
Γ(e)
q

ψ
(e)T
θ ψ

(e)
θ dΓ(e)

q q(e)+

+
∫

Γ(e)
h

ψ
(e)T
θ hψ

(e)
θ dΓ(e)

h

(
θ(e)
a − θ(e)

)
+

+
∫

Γ(e)
r

ε σψ
(e)T
θ

((
ψθθ

(e)
a

)4
−
(
ψ

(e)
θ θ

(e)
)4
)

dΓ(e)
r +

+
∫

Γ(e)
R

ε

1− ε ψ
(e)T
θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

dΓ(e)
R

(3.41d)

f(k)
R =


∫

Γ(e)
R

σ ε
1−ε ψ

(e)T
R

(
ψ

(e)
θ θ(e)

)4
dΓ(e)

R if k = e

0 if k 6= e

(3.41e)

By replacing the temporal discretization of θ̇(e) (see expression (B.13) in appendix B.3)
into equation (3.38), the residual vector for the instant (t+ ∆t) is given by,

r(e)t+∆t =
{

r(e)t+∆t
θ

r(e)t+∆t
R

}
(3.42)

where:

r(e)t+∆t
θ =

∫
Ω(e)

(
B(e)T
θ Dt+∆tB(e)

θ θ(e)t+∆t+

+ ρt+∆t ct+∆t
p ψ

(e)T
θ ψ

(e)
θ

1
γ∆t

(
θ(e)t+∆t − θ(e)t − (1− γ) ∆t θ̇(e)t)) dΩ(e)−

−
[∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e)t+∆t +

∫
Γ(e)
q

ψ
(e)T
θ ψ

(e)
θ dΓ(e)

q q(e)t+∆t+

+
∫

Γ(e)
h

ψ
(e)T
θ ht+∆tψ

(e)
θ dΓ(e)

h

(
θ(e)t+∆t
a − θ(e)t+∆t

)
+

+
∫

Γ(e)
r

εt+∆t σψ
(e)T
θ

((
ψθθ

(e)t+∆t
a

)4
−
(
ψ

(e)
θ θ

(e)t+∆t
)4
)

dΓ(e)
r

]
−

−
∫

Γ(e)
R

εt+∆t

1− εt+∆t ψ
(e)T
θ

(
σ
(
ψ

(e)
θ θ(e)t+∆t

)4
−ψ(e)

R R(e)t+∆t
)

dΓ(e)
R (3.43a)

r(e)t+∆t
R =

∫
Γ(e)
R

1
1− εt+∆t ψ

(e)T
R ψ

(e)
R dΓ(e)

R R(e)t+∆t−

−
∫

Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R R(k)t+∆t−

−
∫

Γ(e)
R

σ
εt+∆t

1− εt+∆t ψ
(e)T
R

(
ψ

(e)
θ θ(e)t+∆t

)4
dΓ(e)

R (3.43b)

The elemental transient system of nonlinear equations to solve can be written as,

r(e)t+∆t = 0 (3.44)
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or in its matrix form:

[
−1−γ

γ M(e) O · · · O
O O · · · O

]t+∆t


θ̇

(e)

Ṙ(1)

...
Ṙ(n)



t

+

+
[
− 1
γ∆t M(e) O · · · O

O O · · · O

]t+∆t


θ(e)

R(1)

...
R(n)



t

+

+
[
K(e) + 1

γ∆t M(e) O · · · O
O K(1)

R · · · K(n)
R

]t+∆t


θ(e)

R(1)

...
R(n)



t+∆t

−


f(e)

f(1)
R
...

f(n)
R



t+∆t

=


0
0
...
0

 (3.45)

The time derivative of the temperature and radiation at the initial time can be cal-
culated particularizing the equation (3.40) for t = 0 and solving the resultant system of
equations in terms of θ̇(e) and Ṙ(k).

The global residual vector will be obtained by assembling (see appendix B.5) all the
elemental ones and it will constitute the global system of nonlinear differential equations
to be solved.

3.7 Solution of the nonlinear system of equations and
tangent matrix

The global system of equations obtained in the previous section will be solved for the
free degrees of freedom by using the Newton–Raphson method (see appendix B.6). In
order to carry out this process, the tangent matrix of the problem has to be computed by
differentiating the residual elemental vector with respect to the variables or by perturbing
the weak form of the problem. In the present thesis, the latter case is presented considering
that the perturbation of the variables and its time derivatives are given by,

∆θ(e) = ψ(e)
θ ∆θ(e) (3.46a)

∆R(e) = ψ(e)
R ∆R(e) (3.46b)

∆θ̇(e) = ψ(e)
θ ∆θ̇(e) (3.46c)

∆Ṙ(e) = ψ(e)
R ∆Ṙ(e) (3.46d)

and the perturbation of its variation by:

∆δθ(e) = 0 (3.47a)
∆δR(e) = 0 (3.47b)
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Hence, by perturbing the weak form (3.24), one obtains, term by term,

∆
∫

Ω(e)
∇δθ(e) · q(e) dΩ(e) = −δθ(e)T

∫
Ω(e)

(
B(e)T
θ D B(e)

θ +

+B(e)T
θ

∂D
∂θ

B(e)
θ θ(e)ψ

(e)
θ

)
dΩ(e) ∆θ(e)

(3.48a)

−∆
∫

Ω(e)
δθ(e) ρ cp θ̇

(e) dΩ(e) = −δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) ∆θ̇(e)−

− δθ(e)T
∫

Ω(e)
ψ

(e)T
θ

(
∂ρ

∂θ
cpψ

(e)
θ θ̇

(e) + ρ
∂cp
∂θ
ψ

(e)
θ θ̇

(e)
)
ψ

(e)
θ dΩ(e) ∆θ̇(e)

(3.48b)

∆
∫

Ω(e)
δθ(e)G(e) dΩ(e) = 0 (3.48c)

∆
∫

Γ(e)
q

δθ(e) q(e) dΓ(e)
q = 0 (3.48d)

∆
∫

Γ(e)
h

δθ(e) h
(
θ(e)
a − θ(e)

)
dΓ(e)

h = δθ(e)T
∫

Γ(e)
h

ψ
(e)T
θ (−h+

+∂h

∂θ

(
ψ

(e)
θ θ

(e)
a −ψ

(e)
θ θ

(e)
))
ψ

(e)
θ dΓ(e)

h ∆θ(e)
(3.48e)

∆
∫

Γ(e)
r

δθ(e) ε σ
(
θ(e)4
a − θ(e)4

)
dΓ(e)

r =

= δθ(e)T
∫

Γ(e)
r

σψ
(e)T
θ

(
∂ε

∂θ

((
ψθθ

(e)
a

)4
−
(
ψ

(e)
θ θ

(e)
)4
)
−

−4 ε
(
ψθθ

(e)
a

)3
)
ψ

(e)
θ dΓ(e)

r ∆θ(e)

(3.48f)

∆
∫

Γ(e)
R

δθ(e) ε

1− ε
(
σ θ(e)4 −R(e)

)
dΓ(e)

R =

= δθ(e)T
∫

Γ(e)
R

ψ
(e)T
θ

(
1

(1− ε)2
∂ε

∂θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

+

+ ε

1− ε 4σ
(
ψ

(e)
θ θ(e)

)3
)
ψ

(e)
θ dΓ(e)

R ∆θ(e)−

− δθ(e)T
∫

Γ(e)
R

ψ
(e)T
θ

ε

1− ε ψ
(e)
R dΓ(e)

R ∆R(e)

(3.48g)

and, in the same way, by perturbing the weak form (3.27) of the radiosity problem one
obtains, term by term:

∆
∫

Γ(e)
R

δR(e) 1
1− ε R

(e) dΓ(e)
R = δR(e)T

∫
Γ(e)
R

1
1− ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R ∆R(e)+

+ δR(e)T
∫

Γ(e)
R

ψ
(e)T
R

1
(1− ε)2

∂ε

∂θ
ψ

(e)
R R(e)ψ

(e)
θ dΓ(e)

R ∆θ(e)
(3.49a)

−∆
∫

Γ(e)
R

∫
Γ(k)
R

δR(e)R(k) cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R =

= −δR(e)T
∫

Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R ∆R(k)
(3.49b)
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−∆
∫

Γ(e)
R

δR(e) σ
ε

1− ε θ
(e)4 dΓ(e)

R = −δR(e)T
∫

Γ(e)
R

σψ
(e)T
R

(
1

(1− ε)2
∂ε

∂θ

(
ψ

(e)
θ θ(e)

)4
+

+4 ε

1− ε
(
ψ

(e)
θ θ(e)

)3
)
ψ

(e)
θ dΓ(e)

R ∆θ(e)

(3.49c)

The thermal properties of the materials and the convective coefficient are considered
temperature-dependent and, consequently, they contribute to the computation of the tan-
gent matrix while the prescribed heat flux, q(e), and the volumetric heat source term, G(e),
are not temperature-dependent.

The tangent matrix can be obtained using the expressions (3.48) and (3.49), which can
be written in the matrix form, as follows,

{
δθ(e)

δR(e)

}T

 ∂r(e)

θ

∂θ̇
(e) O · · · O

O O · · · O




∆θ̇(e)

∆Ṙ(1)

...
∆Ṙ(n)


+

+

 ∂r(e)
θ

∂θ(e)
∂r(e)
θ

∂R(1) · · · ∂r(e)
θ

∂R(n)

∂r(e)
R

∂θ(e)
∂r(e)
R

∂R(1) · · · ∂r(e)
R

∂R(n)




∆θ(e)

∆R(1)

...
∆R(n)



 (3.50)

where:

∂r(e)
θ

∂θ̇
(e) =

∫
Ω(e)

ψ
(e)T
θ ρ cpψ

(e)
θ dΩ(e) +

∫
Ω(e)

ψ
(e)T
θ

(
∂ρ

∂θ
cp + ∂cp

∂θ
ρ

)
ψ

(e)
θ θ̇

(e)
ψ

(e)
θ dΩ(e)

(3.51a)

∂r(e)
θ

∂θ(e) =
∫

Ω(e)
B(e)T
θ

∂D
∂θ

B(e)
θ θ(e)ψ

(e)
θ dΩ(e) +

∫
Ω(e)

B(e)T
θ D B(e)

θ dΩ(e)−

−
[∫

Γ(e)
h

ψ
(e)T
θ

∂h

∂θ
ψ

(e)
θ

(
ψ

(e)
θ θ

(e)
a −ψ

(e)
θ θ(e)

)
dΓ(e)

h −
∫

Γ(e)
h

ψ
(e)T
θ hψ

(e)
θ dΓ(e)

h +

+
∫

Γ(e)
r

σψ
(e)T
θ

∂ε

∂θ
ψ

(e)
θ

((
ψ

(e)
θ θ(e)

a

)4
−
(
ψ

(e)
θ θ(e)

)4
)

dΓ(e)
r −

−
∫

Γ(e)
r

4 ε σψ(e)T
θ ψ

(e)
θ

(
ψ

(e)
θ θ(e)

)3
dΓ(e)

r

]
−

−
∫

Γ(e)
R

ψ
(e)T
θ

1
(1− ε)2

∂ε

∂θ
ψ

(e)
θ

(
σ
(
ψ

(e)
θ θ(e)

)4
−ψ(e)

R R(e)
)

dΓ(e)
R −

−
∫

Γ(e)
R

4σ ε

1− ε ψ
(e)T
θ ψ

(e)
θ

(
ψ

(e)
θ θ(e)

)3
dΓ(e)

R (3.51b)

∂r(e)
θ

∂R(k) =


∫
Γ(e)
R

ε
1−ε ψ

(e)T
θ ψ

(e)
R dΓ(e)

R if k = e

O if k 6= e

(3.51c)
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∂r(e)
R

∂θ(e) =
∫

Γ(e)
R

1
(1− ε)2

∂ε

∂θ
ψ

(e)T
R ψ

(e)
R R(e)ψ

(e)
θ dΓ(e)

R −

−
∫

Γ(e)
R

σ
1

(1− ε)2
∂ε

∂θ
ψ

(e)T
R

(
ψ

(e)
θ θ(e)

)4
ψ

(e)
θ dΓ(e)

R −

−
∫

Γ(e)
R

4σ ε

1− ε ψ
(e)T
R

(
ψ

(e)
θ θ(e)

)3
ψ

(e)
θ dΓ(e)

R (3.51d)

∂r(e)
R

∂R(k) =


∫

Γ(e)
R

1
1−ε ψ

(e)T
R ψ

(e)
R dΓ(e)

R if k = e

−
∫

Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R if k 6= e

(3.51e)

By replacing the temporal discretization of the temperature into (3.50), the final form
of the elemental tangent matrix is obtained,

K(e)t+∆t =

∂r(e)t+∆t
θ

∂θ(e)
∂r(e)t+∆t
θ

∂R(1) · · · ∂r(e)t+∆t
θ

∂R(n)

∂r(e)t+∆t
R

∂θ(e)
∂r(e)t+∆t
R

∂R(1) · · · ∂r(e)t+∆t
R

∂R(n)
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where:
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The computation of the tangent matrix term ∂r(e)t+∆t
R

∂R(k) in the finite element (e) involves
the calculation of the radiative heat exchange of the element (e) face with all the visible
sides of the remaining elements (k). The elemental tangent matrix is not symmetric,
as expression (3.50) shows. The elemental tangent matrices will be assembled to obtain
the global tangent matrix required to solve the nonlinear system of equations using the
Newton–Raphson method.

3.8 Computational aspects

The implemented code allows simulating two-dimensional heat transfer problems, where
the domain can be discretized with isoparametric triangular or quadrilateral elements and
the radiosity boundary with isoparametric one-dimensional elements.

The following two-dimensional elements are programmed: (i) triangular with 3, 6 or 10
nodes, and (ii) quadrilateral with 4, 8, 9, 12 or 16 nodes. In the boundary where radiative
heat flux between walls is applied, one-dimensional elements of 2, 3 or 4 nodes can be
employed. Figure 3.4 illustrates the different element types.

In general, the weak form derived in the previous sections may not be integrated in
closed form. In the developed code, Gauss integration rule is programmed which is based
on choosing the weights and the integration points so that the highest possible polynomial
is integrated exactly using a minimum number of points. Further information can be
consulted in appendix B.4.

A discussion about the number of Gauss points to use in the integration in order to
compute exactly the integrals of the nonlinear system of equations is carried out. The
mentioned study considers the isoparametric transformation Jacobian and the nonlinear
terms constant.

For one-dimensional elements it is possible to prove that a number of integration points
nG needed to integrate exactly a polynomial of order p is given by:

nG ≥
p+ 1

2 (3.54)

For quadrilateral elements, the tensor product of the previous rule is used.
The integral term in the domain with the maximum polynomial degree is,∫
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ψ

(e)T
θ

(
∂ρ

∂θ
cpψ

(e)
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(e) + ρ
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θ θ̇

(e)
)
ψ

(e)
θ dΩ(e) (3.55)
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Figure 3.4: One- and two-dimensional elements.

whose polynomial degree is 3 (linear functions), 6 (quadratic functions) and 9 (cubic
functions), being employed 4, 12 and 19 Gauss points for triangular elements and 2 × 2,
4× 4 and 5× 5 for quadrilateral elements.

The integral term on the boundary with the maximum polynomial degree is,∫
Γ(e)
R

σ
1(

1− εt+∆t)2 ∂εt+∆t

∂θ
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(e)T
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(
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(e)
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)4
ψ

(e)
θ dΓ(e)

R (3.56)

being required 4, 7 and 10 Gauss points to evaluate the integral in a linear, quadratic and
cubic element, respectively. Table 3.1 summarizes this information.

Regarding the integral which involves rational and trigonometric functions,∫
Γ(e)
R

ψ
(e)T
R

∫
Γ(k)
R

ψ
(k)
R

cosβ(e) cosβ(k)

2 r dΓ(k)
R dΓ(e)

R (3.57)

in most of the problems presented, 10 Gauss points were used in each element to determine
with accuracy the value of the integrals without increasing excessively the computation
time. This number of points is enough when there are no discontinuities in the radiosity
field that can influence the temperature evolution.
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Element type Expression (3.55)
p nG

T3 3 4
T6 6 12
T10 9 19
Q4 3 2× 2
Q8 6 4× 4
Q9 6 4× 4
Q12 9 5× 5
Q16 9 5× 5

(a) Tn and Qn denote Triangular and
Quadrilateral elements with n nodes, re-
spectively.

Element type Expression (3.56)
p nG

L2 3 2
L3 12 7
L4 21 11

(b) Ln denotes Line elements with n nodes.

Table 3.1: Polynomial degree (p) of the integrand function and number of Gauss points
(nG) required for the numerical integration.

3.9 Verification of the model

3.9.1 Introduction

In the current section, seven numerical applications are presented in order to illustrate
the concepts introduced in the preceding sections. The problems reported are solved using
the developed code and the numerical results obtained are verified by comparing them with
analytical or numerical solutions available in the literature or with numerical solutions
computed with a commercial FE software (code-to-code comparison). The objective of
this comparison is to guarantee that the code is implemented correctly.

The verification examples presented are the following:

• Linear steady state heat transfer analysis (section 3.9.2). This problem is designed
to demonstrate the accuracy of the solution and the convergence of the code using
different elements and meshes.

• Linear steady state heat convective analysis (section 3.9.3). This one-dimensional
example illustrates the computation of the heat transfer problems in steady state
regime when linear thermal material properties are considered.

• Nonlinear steady state temperature of a slab (section 3.9.4). This one-dimensional
example, similar to the previous one, demonstrates the computation of the heat
transfer problems when nonlinear thermal material properties are employed.

• Linear transient heat transfer analysis of a slab with prescribed heat flux (sec-
tion 3.9.5). This one-dimensional example is used to verify the code developed
in a transient analysis.

• Nonlinear transient heat transfer analysis of a slab with convective and radiative
heat fluxes applied (section 3.9.6). This example demonstrates the use of the code
in transient analysis with nonlinear boundary conditions (radiative heat transfer)
involved.
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Figure 3.5: Geometry of the problem.

• Radiative heat flux between two parallel walls (section 3.9.7). This application
instances the radiative heat exchange between parallel walls of a closed cavity, in
which the effect of the fluid is not included.

• Radiative heat flux between two adjacent walls (section 3.9.8). This example is
employed to discuss the computational time for the calculation and the effect of the
singularities in the radiosity field.

The resulting system of equations is solved using the iterative Newton–Raphson method
until the solution is reached (see details on appendix B.6).

3.9.2 Linear steady state heat transfer analysis

The problem to solve consists of a 1 m long square plate with a prescribed temperature
equal to unity in all sides (θ = 1 ◦C), as illustrated in figure 3.5a. The source (or internal
heat generation) term is equal to G = 1 W/m2 in the domain (1× 1 m2) and the material
is isotropic with a thermal conductivity set as k = 1 W/(m ◦C).

The exact solution is given by Arpaci (1966),

θ (x1, x2) = θ + Ga2

k

(
1
2

(
1−

(
x1
a

)2
)
−

−2
∞∑
n=1

(−1)n cosh
(
(2n+ 1) π2

x2
a

)
cos

(
(2n+ 1) π2

x1
a

)(
(2n+ 1) π

2
)3 cosh

(
(2n+ 1) π2

b
a

)
 (3.58)

where 2a and 2b are the plate dimension sides.
Only a quarter of the slab is modelled using the symmetry conditions, as depicted in

figure 3.5b.
In order to analyse the accuracy of the finite element code and of the elements imple-

mented, four different meshes with 1, 4, 16 and 64 elements are tested, see figure 3.6. The
element types employed are quadrilateral elements of 4, 8 and 9 nodes. Hence, a total of
12 finite element models were generated.

Figure 3.7 depicts the temperature field obtained using the M14 mesh (M1 mesh with
4-node elements) and M39 mesh (M3 mesh with 9-node elements). It can be seen that the
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(a) M1 (b) M2 (c) M3 (d) M4

Figure 3.6: Meshes with 1, 4, 16 and 64 elements.

(a) Mesh M1, Q4 elements. (b) Mesh M3, Q9 elements.

Figure 3.7: Temperature field.

temperature distribution depicted in figure 3.7a is bilinear and that the mesh is excessively
coarse to represent correctly the solution, while the results obtained with a refined mesh
(figure 3.7b) are closer to the exact solution. This fact will be discussed once more in the
following.

The error of each FE solution evaluated at any mesh is quantified as follows,

error = U − Û (3.59)

where Û is the energy calculated using the known exact solution and U is the energy
obtained with the finite element code.

The exact energy is computed from the exact heat flux,

Û = 1
2k

∫ a

−a

∫ b

−b
q · q dx1 dx2 (3.60)

where q = q(x1, x2) can be obtained by deriving equation (3.58), rendering for each heat
flux component:
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Meshes h Q4 Q8 Q9
M1 0.5 0.00292969 0.00430126 0.00436254
M2 0.25 0.00399693 0.00438569 0.00438979
M3 0.125 0.00429170 0.00439250 0.00439275
M4 0.0625 0.00436752 0.00439300 0.00439304

SLOPE 1:1.949 1:3.933 1:3.716
Exact 0.0043930250 — — —

Table 3.2: Energy values obtained.

The numerical energy computed in the complete domain of the problem is given by:

U = 1
2

∫
Ω
θT BT

θ D Bθ θ dΩ = 1
2 θ

T Kθ (3.62)

Table 3.2 summarizes the energy obtained for each numerical test. The line SLOPE in
the table represents the double of the rate of convergence of the elements. The theoretical
rates of convergence for the different elements employed are verified: linear for the element
Q4 and quadratic for Q8 and Q9. Figure 3.8 shows the error convergence results as a
function of the characteristic element length, h. Each point on the plot represents the
error in a finite element approximation obtained with the tested meshes.
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Figure 3.8: Convergence of the error.

An additional analysis employing the commercial software ADINA-T (2010) is per-
formed using the M3 mesh with 9-node elements. Table 3.3 reports the temperature
values in the node 1 (point with coordinates x1 = x2 = 0 m). It can be observed that
both ADINA-T (2010) and the code developed are able to reproduce the exact solution
with the 9-node element M3 mesh.

Excellent agreement between the numerical and the analytical solution is observed.
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Meshes h Q4 Q8 Q9
M1 0.5 1.093750 1.067416 1.073718
M2 0.25 1.077679 1.073524 1.073652
M3 0.125 1.074598 1.073662 1.073670
M4 0.0625 1.073899 1.073671 1.073670

Exact 1.073670 — — —
ADINA M39 1.073670 — — —

Table 3.3: Temperature values at node 1 (middle of the plate).

0.05

x2

x1

θ = 20

0.1

q = 0

q = 0

θa = 25
convective flux

Figure 3.9: Induction heated plate.

3.9.3 Linear steady state heat convective analysis

Consider now a plate heated by induction which has an uniform width of 0.05 m and
a length of L = 0.1 m.

On the left side of the plate (x1 = 0 m), the temperature is prescribed and equal to
θ = 20 ◦C, while on the right side of the plate (x1 = 0.1 m) a convective heat flux is
applied. The top and bottom sides of the plate are considered insulated. The thermal
conductivity is k = k11 = k22 = 30 W/(m ◦C), the ambient temperature is θa = 20 ◦C and
the convection heat transfer coefficient is h = 2000 W/(m2 ◦C).

Induction heating is represented by the heat superficial density,

G(x1) = G0 e
x1−L
P (3.63)

where G0 corresponds to the heating superficial power and has a value of 5 ·107 W/m2 and
P is a characteristic heating depth depending on the inductor frequency set as P = 0.02 m.
Figure 3.9 shows the geometry plate, the boundary conditions and the mesh used. The
heat generation was introduced in the code developed as nodal values.

The current problem was solved using a mesh with 50 two-dimensional 4-node elements.
The results were compared with the exact solution reported in Bergheau and Fortunier
(2008):

θ(x1) = θ + G0 P

k + Lh

(
1 + P h

k

(
1− e−

L
P

))
x1 + G0 P

2

k
e−

L
P

(
1− e

x1
P

)
(3.64)

Figure 3.10 illustrates the temperature distribution along the x1-direction and table 3.4
summarizes the numerical values of the temperature, where “Exact” stands for the results
obtained with the expression (3.64), and “Num.” corresponds to the results computed with
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x1 (m) Exact (◦C) Num. (◦C)
0.00 20.0000000 20.0000000
0.01 118.1446367 118.2264406
0.02 214.3988782 214.5609100
0.03 307.5363849 307.7760459
0.04 395.5352647 395.8482706
0.05 475.0619809 475.4412681
0.06 540.6204609 541.0543833
0.07 583.1492127 583.6185693
0.08 587.7083618 588.1814954
0.09 529.6662192 530.0909360
0.10 368.4119954 368.7022424

Figure 3.10: Temperature distribution within
the plate length in steady state heat transfer.

Table 3.4: Summary of the nodal tem-
perature results (exact and numerical).

the code implemented in MATLAB (2012). The error computed as the relative difference
between the exact and the numerical solution is approximately 0.08% (average error). The
results reported show good agreement between numerical and analytical solutions.

3.9.4 Nonlinear steady state temperature of a slab

An infinitely long slab with 2L width is considered in this example. The internal heat
generation is set as G = 2 W/m2.
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(a) Geometry of the slab and boundary conditions.
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(b) Steady state temperature of slab for different val-
ues of β.

Figure 3.11: Nonlinear steady state temperature of a slab.
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As the slab presents symmetric conditions with respect to the x2 axis, only half of the
slab is modelled. The finite element model consists of a 0.1 × 0.05 m2 rectangle, that is
discretized spatially by ten equally spaced two-dimensional 4-node quadrilateral elements.
The top, bottom and right sides of the slab modelled are considered insulated, while a
temperature of 0 ◦C is prescribed in the right side. Figure 3.11a illustrates the finite
element model and the boundary conditions.

Regarding the thermophysical properties of the material, a linear variation of the
thermal conductivity with the temperature following k = k11 = k22 = k0 (1 + β θ) is
assumed (k0 is set equal to 1 W/(m ◦C)). The parameter β is a dimensionless constant
set equal to 0, 0.1 and 0.3, for the three simulations carried out. The density and specific
heat capacity of the material are constant and equal to unity.

The analytical solution is given by Arpaci (1966):

θ(x1)− θ
GL2/(2 k0) = 1

β GL2/(2 k0)

−1 +

√√√√1 + 2 β GL
2

2 k0

(
1−

(
x1
L

)2
) (3.65)

Expression (3.65) also reports the solution for a temperature-independent material (con-
stant thermal conductivity) when β → 0.

Figure 3.11b depicts the steady state temperature along the x1 axis. Excellent agree-
ment between the numerical and the analytical temperatures can be observed.

3.9.5 One-dimensional linear transient heat transfer analysis of a slab
with prescribed heat flux

The slab analysed in the present example has dimensions 0 ≤ x1 ≤ L1 and 0 ≤ x2 ≤ L2,
where L1 = π m and L2 = 1 m. The initial temperature is set as 0 ◦C. A constant
prescribed heat flux, q = 10 W/m2, is applied on the side x1 = L1. The slab sides x1 = 0,
x2 = 0 and x2 = L2 are insulated. Figure 3.12 illustrates the geometry and the boundary
conditions of the slab modelled.

x2

x1

L2 = 1

L1 = π

q = 0
q = 10

Figure 3.12: Geometry and boundary conditions of the slab with prescribed flux.

The analytical solution is given by (Carslaw and Jaeger, 1959):

θ(x1, t) = q t

ρ cp L1
+ q L1

k

(
3x2

1 − L2
1

6L2
1
− 2
π2

∞∑
i=1

(−1)i
i2

e−ρ cp i
2 π2 t/L2

1 cos i π x1
L1

)
(3.66)

A transient two-dimensional finite element simulation is carried out using a mesh of
50 quadrilateral 4-node elements. The numerical data of the problem is: ρ = 1 kg/m2,
cp = 1 J/(kg ◦C), k = k11 = k22 = 1 W/(m ◦C), t = 20 s, ∆t = 0.5 s and γ = 0.5
(Crank–Nicolson scheme).

Figure 3.13 depicts the evolution of the temperature field along the x1 axis for different
computational times. The code implemented is capable of accurately reproducing the
analytical solution of the problem, when an adequate time step and mesh size is employed.
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Figure 3.13: Temperature evolution for different computational times.

3.9.6 Nonlinear transient heat transfer analysis of a slab with
convective and radiative heat fluxes applied

In the present section, a transient analysis of a slab subjected simultaneously to con-
vective and radiative heat flux is presented. This problem is reported by Bathe and
Khoshgoftaar (1979), where the imperial system of units is employed.

The initial temperature of the slab is equal to 1498.1505 ◦F. At t = 0 h, a convective
and radiative heat flux is applied on the right side of the slab, where the ambient temper-
ature is θa = 0 ◦F. The bottom, top and left faces are insulated. Figure 3.14 shows the
geometry of the slab and schematically represents the boundary conditions.

x2

x1

L2 = 0.1

L1 = 1

q = 0

θa = 0
qh + qr

Figure 3.14: Geometry and boundary conditions of the slab with convective and radiative
heat flux.

The convective coefficient is h = 0.04 Btu/(in2 h ◦F) and the emissivity is set as
ε = 1. The conductivity and the specific heat are considered constant and equal to
0.01 Btu/(in h ◦F) and 0.01 Btu/(lb ◦F), respectively. The density is ρ = 1 lb/in2 and the
Stefan–Boltzmann’s constant is σ = 1.18958 · 10−11 Btu/(in2 h ◦F4).

A nonlinear transient heat transfer analysis using the Euler backward method is carried
out considering a mesh of 20 equally spaced two-dimensional quadrilateral 4-node conduc-
tion elements. The final time considered is t = 3.66 h with a time step of ∆t = 0.001 h.

Figure 3.15 illustrates the evolution of the temperature in two points situated on the
edges x1 = 0 in and x1 = 1 in. The numerical results obtained are compared with those
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Figure 3.15: Transient temperature results for a slab with radiative and convective bound-
ary conditions.

calculated employing the commercial finite element package ADINA-T (2010). Once again,
very good agreement can be observed.

3.9.7 Radiative heat flux between two parallel walls

A radiative heat flux problem between two parallel walls of an enclosure is pre-
sented in this section. The exterior edge of the left wall has a prescribed temperature
of 0 ◦C, while the temperature in the exterior of the right wall is 1000 ◦C. The ther-
mal conductivity of the walls is taken as 1.5 W/(m ◦C) and the emissivities are 0.1
and 0.3 in the left and right walls, respectively. The Stefan–Boltzmann’s constant is
set as σ = 5.669 · 10−8 W/(m2 K4). The geometry of the problem is illustrated in fig-
ure 3.16, where the dimensions are given in meters. The discontinuous lines emphasise
that the problem consists of an closed cavity with finite length walls. This problem was
originally proposed by Bergheau and Fortunier (2008) and was adapted in this thesis for
finite walls8.

A steady state nonlinear analysis is carried out using a regular mesh of 450 4-node
quadrilateral elements (10×30 on the left wall and 5×30 on the right one). The exchange
of radiative heat transfer takes place between the interior faces of the walls, where the
radiosities are approximated by 30 2-node linear elements on each face. Figure 3.17 depicts
the temperature field obtained. It can be observed that a reduced variation of temperatures
is obtained between the faces of the left wall (variation of temperatures between 0 ◦C
and 11.6 ◦C). However, in the right wall, an elevated gradient of temperatures can be
observed. This result leads to a higher heat flux in the right wall (especially in the
horizontal direction, even if the heat flux is two-dimensional).

8The results presented in this thesis are not coincident with those reported in the reference book, as
in that original problem there is a radiative heat flux between two infinite parallel walls, hence leading to
a solution where the radiative heat flux is equal in both walls and the heat transfer is one-dimensional.
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Figure 3.16: Geometry of the radiative exchange among two parallel walls of a close cavity.

Figure 3.17: Temperature distribution on the walls.

The numerical solution is compared with that obtained using the commercial soft-
ware ADINA-T (2010). Figure 3.18 illustrates the evolution of the temperature (it can
be observed clearly that the problem is two-dimensional) and of the radiosity along the
line x1 = 0.5 m. An excellent agreement is observed for both temperature and radiosity
distributions.

3.9.8 Radiative heat flux between two adjacent walls

The present example consists of two 1 m long walls with 0.1 m of width and a relative
angle between them of 60◦. The external edges of the walls have a prescribed temperature
equal to 100 ◦C and the internal faces of the walls exchange radiative heat flux. The lateral
faces of the walls are adiabatic. The thermal conductivity is taken as 1.5 W/(m ◦C) and the
emissivity as 0.1. A steady state finite element analysis is carried out considering a mesh
of 80 conduction 4-node elements and 20 linear one-dimensional elements to discretize
the radiative boundary. Figure 3.19 shows the geometry of the problem and the mesh
employed.

The temperature and heat flux distributions obtained are represented in figure 3.20. It
can be observed that, due to the two-dimensional heat flux, the temperature distribution
along the internal faces of the walls is not uniform, with the zone close to the contact
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(a) Temperature distribution.
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(b) Radiosity distribution.

Figure 3.18: Temperature and radiosity distributions along x1 = 0.5 m (interior face of
the left wall).
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Figure 3.19: Mesh and geometry of two adjacent walls problem.

point being warmer. Furthermore, it can be seen that the heat flux in the horizontal wall
is mainly vertical, while in the leaning wall, both components of the heat flux are relevant.

Figure 3.21 depicts non-zero elements of the tangent matrix when radiative heat flux
is considered or not considered. It can be observed that the consideration of the radiative
heat flux increments the size of the tangent matrix and that the radiosity matrix is full
(see the lower right corner of figure 3.21b).

Based on the previously defined mesh, the commercial software ADINA-T (2010) was
used to verify the results obtained by means of a code-to-code comparison. Figure 3.22
plots the comparative graphs of the temperature and radiosity distributions. Once more,
an excellent agreement between both numerical results is observed. In both cases, the
solution is obtained considering 10 Gauss points at each element to integrate the expres-
sion (3.57).

Figure 3.22 also depicts the temperature and radiosity distributions obtained consid-
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(a) Temperature field.

(b) Horizontal heat flux component. (c) Vertical heat flux component.

Figure 3.20: Temperature and heat flux distribution in the adjacent walls.

ering 20 and 50 Gauss points in the integration of the radiosity matrix. A difference can
be observed in the temperature and radiosity values computed in the vicinity of the point
located in the coordinates x1 = 0, x2 = 0. In fact, it can be verified that in that points
a singularity in the radiosity field exists and the mesh is not able to reproduce correctly
the temperature and radiosity fields. This is consistent with Modest (2003), who referred
that the evaluation of the term (3.57) using numerical quadrature can be problematic due
to the singularities in the integrand. In this case, the numerical results depend strongly
on the number of Gauss points considered and the convergence is slow.

A refined mesh, depicted in figure 3.23, is designed to represent more accurately the
temperature and radiosity fields. Figure 3.24 depicts the temperature and radiosity fields
evolution obtained taking 10, 20 and 50 Gauss points. In this case, it can be observed
that the solutions obtained using different number of Gauss points are similar, although
the differences in the radiosity field are kept in the singularity.

These results demonstrate that the singularity in the radiosity field influences strongly
the temperature results. Hence, a refined mesh in this zone has to be generated in order to
obtain an acceptable solution without increasing excessively the number of Gauss points
in the integration of the term (3.57).
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Figure 3.21: Sparsity pattern of the tangent matrix (the axes of both figures refer to the
dimension of the matrix and nz is the number of non-zero elements).
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(a) Temperature distribution.
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(b) Radiosity distribution.

Figure 3.22: Temperature and radiosity values along the line x2 = 0 m.

3.10 Concluding remarks

In the present chapter, the FE formulation of the coupled problem between conduction
heat transfer and radiative heat exchange in a cavity was presented. The code developed
computes the temperature field as a primary variable and, subsequently, it allows the
evaluation of the heat flux fields. The programme implemented allows performing steady
state and transient analyses considering that the thermal properties of the material are
constant or temperature-dependent. In the same way, the convection coefficient can be
considered temperature-dependent.
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Figure 3.23: Refined mesh.
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(a) Temperature distribution.
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Figure 3.24: Temperature and radiosity values along the line x2 = 0 m (refined mesh).

A significant increment of the computational time was observed when radiative ex-
changes between faces are considered in the problem, as (i) the matrix of the radiosity
equation is full and the evaluation of the terms r(e)t+∆t

R , ∂r(e)t+∆t
R

∂θ(e) and ∂r(e)t+∆t
R

∂R(k) requires
more computational time, (ii) the number of equations in the system of equations to
be solved increases (besides the temperature degrees of freedom, the radiosity degrees of
freedom are included), and (iii) some of the integrals involve rational and trigonometric
functions. Consequently, in most problems, generate the radiosity equations is more ex-
pensive in terms of computational speed and memory usage than solving the heat transfer
equations system. One possible action to reduce the computational time could be the
approximation of the radiosity (3.30b) and its variation (3.31b) by constant functions. In
this case, r(e)t+∆t

R , ∂r(e)t+∆t
R

∂θ(e) and ∂r(e)t+∆t
R

∂R(k) could be evaluated only once.
Furthermore, a singularity in the radiosity field was detected when there are sharp

corners in the geometry. This fact influences considerably the results obtained and makes
it necessary to use refined meshes or a higher number of Gauss points to integrate the
radiosity equations. This conclusion is of special importance as the thermal modelling
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presented in chapter 7 for GFRP profiles includes the computation of the radiative heat
exchange in cavities with sharp corners.

The code implemented in MATLAB (2012) was verified using several benchmark so-
lutions and, in all cases, excellent results were observed, as well as quadratic convergence
of the iterative method in the asymptotic limit of the solution.



Chapter 4

Finite element method for the
non-isothermal fluid dynamic
problems

4.1 Introduction

The governing equations of a viscous and incompressible fluid flow are known as the
Navier–Stokes equations. They are nonlinear differential equations whose analytical solu-
tion can only be obtained for very particular — and usually simple — problems. Hence,
numerical techniques were applied in the last years to obtain approximate solutions for
these equations (Fernández-Carvajal, 2001). The most popular methods are the finite vol-
ume method (FVM), the finite element method (FEM) and the finite difference method
(FDM).

The FDM is based on the spatial and temporal finite difference approximation of the
derivatives included in the governing equations. This method was used by many authors,
as for example Roache (1973), Katopodes (1984) or Smith (1985). The FEM began to be
used in fluid dynamics with the works of Jamet and Raviart (1974), Shen and Habashi
(1976) and Kim (1988). This method presents specific numerical difficulties when applied
to fluid problems: conservation of the mass of the fluid, approximation of velocities and
pressures, asymmetric tangent matrix due to the convective terms and the treatment of
viscous forces between the particles of the fluid. In particular, the numerical instabilities
of the method due to the convective terms and the need to satisfy the Ladyzhenskaya–
Babǔska–Brezzi (LBB) condition are the main reasons why other authors prefer to use
the FVM, which was born as a special case of the FDM based upon the splitting of the
domain into a finite number of control volumes (Patankar and Spalding, 1972). However,
the FEM is still considered a powerful tool for solving flow problems and different authors
postulated solutions for the numerical instabilities. Taylor and Hood (1973) detected nu-
merical oscillations when inappropriate element types were used to solve non-isothermal
fluid dynamic problems. These elements, in particular those that approximate the velocity
and the pressure with the same degree polynomials, did not satisfy the LBB condition. In
the same publication, the elements known as Taylor–Hood were proposed. They strictly
satisfy strictly the LBB condition and were used in fluid problems providing excellent
results.

The second source of instability stems directly from the Galerkin formulation as it deals

67
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with the convective term in a symmetric way. It causes the occurrence of wiggles1 in the ve-
locity and temperature fields, which will be more important as more significant is the con-
vection in the problem, i.e., in problems with high number of Reynolds. These oscillations
can be mitigated using adapted meshes, very refined in the areas where the flux changes
drastically the flow conditions. This procedure can increment very significantly the compu-
tational cost making it impracticable to solve the problem in due time. Hence, in Heinrich
et al. (1977) a Petrov–Galerkin stabilization method for the advection-diffusion equation
was presented, thus contributing to the expansion of the FEM (Fernández-Carvajal, 2001).
This method was extended for the Navier–Stokes equations and Brooks and Hughes (1982)
reported the streamline upwind/Petrov–Galerkin method (SUPG), which consists of the
inclusion of an artificial diffusive term in the Navier–Stokes equations. Different ver-
sions of the SUPG method are available in the literature: Franca and Frey (1992), Kondo
(1994), Hannani et al. (1995) and Tezduyar and Osawa (2000). Furthermore, other sta-
bilization techniques as GLS (Galerkin/least-squares), SGS (subgrid scale method) or LS
(least-squares) were also developed.

In the present chapter, a mixed finite element formulation for the non-isothermal fluid
dynamic problems is presented. The finite element method is based on the transformation
of the differential governing equations into 3n + m (n and m are the number of nodes
where the velocity/temperature and pressure are approximated, respectively) nonlinear
algebraic equations for the three-dimensional problems. These equations, in general, can
demand big storing memory requirements. During the implementation process it was
set as a priority to obtain, at each time step, quadratic convergence in the asymptotic
limit of the solution. This allows reducing the number of iterations and, consequently,
lessen the computational time. Hence, the resulting nonlinear system of equations will be
solved using the Newton–Raphson method. At the end of the chapter several examples
are presented in order to verify the code.

4.2 Basic concepts

Fluids are substances whose molecular structure offers no resistance to external shear
forces. The intermolecular forces are weaker in liquids and extremely small in gases. The
stress in a fluid is proportional to the time rate of strain, while in solids it is proportional
to the strain. In the case of fluids, the proportionality parameter is known as viscosity
and, in general, it is a function of the thermodynamic variables, i.e., temperature and
pressure of the fluid (Ferziger and Perić, 2000).

As stated in Reddy and Gartling (2010), fluid mechanics is a broad area and is typically
divided into smaller areas based on the characteristics of the fluid or on the basic nature
of the flow. An inviscid fluid is one where the viscosity is assumed to be zero. An
incompressible fluid is one with constant density and an incompressible flow is one in
which the density variations are negligible. A perfect or ideal fluid is an inviscid fluid.
Otherwise, a real fluid has a finite viscosity and it may or may not be incompressible. A
Newtonian fluid is a fluid whose viscosity depends only on the thermodynamic properties
and in which the stress is linearly related to the strain rate. A non-Newtonian fluid is one
that does not obey the linear stress-strain rate relation (Reddy, 2004a, Hauke, 2008).

The speed of the fluid affects its properties and, then, the flow. At low speeds, the
inertia of the fluid may be ignored and the flow is called creep flow. This regime is

1Spurious node-to-node numerical oscillations.
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important in flows containing small particles in suspension or in flows through porous
media. As the speed is increased, inertia effects become relevant, but if each fluid particle
follows a smooth trajectory, the flow is laminar. Further increases in speed may lead to
instability that produces a more random type of flow that is called turbulent flow (Reddy,
2004a, Hauke, 2008). Some dimensionless parameters can be used to characterize a flow.
In viscous fluids, the Reynolds number is defined as the ratio of inertial forces to viscous
forces,

Re = ρU L

µ
(4.1)

where ρ is the density of the fluid, µ is the fluid viscosity, U is the characteristic flow
velocity and L is a characteristic dimension of the flow region. A small Reynolds number
(high viscosity and/or small velocities) produces a laminar flow. In opposition, a high
Reynolds number flow develops transitional or turbulent flows.

The motion of a fluid is governed by the global laws of conservation of mass and mo-
mentum and the energy equation. The equations of motion resulting from the application
of the conservation of linear momentum principle are known as the Navier–Stokes equa-
tions, which can be expressed in terms of the Reynolds number (dimensionless equations).
When the temperature effects are not important, the energy equation is uncoupled from
the Navier–Stokes equations and, therefore, for isothermal flows only the Navier–Stokes
equations and the continuity equation are solved. For non-isothermal flows the energy
equation is coupled with the others and it considers the possibility of density differences
(due to temperature variation), which give rise to buoyancy (Reddy and Gartling, 2010).

In the case of non-isothermal fluids, the study of the motion of the fluid involves
joining two different areas: fluid dynamics and heat transfer. In these fluids, convective
fluxes appear, being classified as natural/free, forced or mixed convective fluxes. In the
present thesis only the natural convection is considered, as the final objective of the work
is to reproduce the thermal behaviour of the GFRP profiles tested in the laboratory
conditions and, during the tests, the profiles were protected from the wind using a system
featuring four flame retardant blankets and two agglomerated cork structures Morgado
et al. (2013a,b). As a result of this setup, it can be considered that no forced convection
developed in the top face of the GFRP profiles.

In the present chapter, a coupled fluid-solid thermal problem is presented. The cur-
rent formulation involves a coupled solution scheme of the Navier–Stokes equations, the
advection-diffusion equation and the heat transfer equation. As the fluid is considered
incompressible, the forces due to the changes of the density as a result of the variation of
the temperature in the fluid are computed using the Boussinesq approximation (Reddy
and Gartling, 2010). This approach was considered in the computation of nonisothermal
incompressible fluids, as its inclusion in the formulation only requires a minimal varia-
tion in the body force term. However, this hypothesis is limited to reduced temperature
gradients in the fluid.

Furthermore, the FE formulation presented contains the stabilization terms of the
convection in the Navier–Stokes equation and in the advection-diffusion equation. These
terms can be important in problems where the Reynolds and Rayleigh numbers are sig-
nificant. This stabilization allows solving complex fluid dynamics problems using a not
particularly refined mesh and with a reasonable time step and, as referred in Tezduyar
and Osawa (2000), it can also improve the convergence to the solution. However, the
stabilization is unnecessary in the benchmark problems presented as: (i) the respective
Reynolds numbers are relatively low, and (ii) their geometry is particularly simple.
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4.3 Governing equations

4.3.1 Preliminary comments

The mathematical model to describe the motion of a fluid is governed by the conserva-
tion of mass equation and the Navier–Stokes equations (momentum equations), which are
a set of nonlinear coupled partial differential equations in terms of velocity and pressure.

In order to define a flow, two alternative descriptions can be used:

• Eulerian: the motion of all matter passing through a fixed spatial location is con-
sidered. In this formulation, the control volume remains fixed in the space and the
displacements of the particles are ignored.

• Lagrangian: the displacements of a set of particles is a primary dependent variable.
In this formulation, the control volume is variable.

Eulerian description is commonly used to study fluid-flow and coupled fluid-flow with
heat transfer problems, hence this is the system used in this work.

Regarding the condition of incompressibility, a fluid can be considered incompressible
when the density does not change due to the pressure. In these cases, the density can be
treated as a parameter instead of as a variable. In formulations that consider compressible
fluids, an extra equation, relating density, temperature and pressure, has to be introduced.
This equation is known as the state equation and, in the case of perfect gases, it is given
by (Versteeg and Malalasekera, 1995),

p = ρR θ (4.2)

where ρ is the density, p is the pressure, θ is the temperature and R is the ideal gas
constant.

4.3.2 Conservation of mass

The principle of conservation of mass can be stated as the time rate of change of mass
in a fixed volume being equal to the rate of inflow of mass through the surface. The
application of this principle to the control volume leads to the continuity equation:

∂ρ

∂t
+ div (ρv) = 0 (4.3)

Equation (4.3) can be developed to obtain,
∂ρ

∂t
+ ∂ρvi

∂xi
= 0

where vi are the components of the velocity vector, v, in a three-dimensional space.
For steady state conditions, the equation (4.3) becomes,

∂ρvi
∂xi

= 0 (4.4)

and if the density changes following a fluid particle are negligible, the continuity equation
is referred to as the incompressibility condition, which expresses that the volume change
for an incompressible fluid during its deformation is zero:

∂vi
∂xi

= 0⇔ div v = 0 (4.5)
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4.3.3 Conservation of momentum

The principle of conservation of linear momentum states that the time rate of change
of linear momentum of a given set of particles is equal to the vector sum of all external
forces acting on this set. The equation can be written as,

ρ
Dv
Dt = divσ + ρ b (4.6)

where D/Dt is the material derivative, divσ is the divergence of the Cauchy stress tensor
and b is the body force vector measured per unit mass. Equation (4.6) is known as
Navier–Stokes equation. The material derivative of a vector and the operator divergence
of a tensor are defined as:

Dv
Dt = ∂v

∂t
+ (∇v) v (4.7a)

divσ = σij,j ei (4.7b)

Considering an Eulerian reference system, the acceleration of the fluid can be de-
composed in two terms: (i) local acceleration and (ii) convective acceleration. Hence,
equation (4.6) can be written as,

ρ (v̇ + (∇v) v) = divσ + ρ b (4.8)

where v̇ represents the partial derivative of the velocity vector with respect to time and
∇v is the gradient of the velocity defined as:

∇v = v,i ⊗ ei (4.9)

For viscous incompressible and Newtonian fluids, the Cauchy stress tensor can be
calculated as,

σ = τ + (−p̃) I (4.10)

where p̃ is the absolute pressure (hydrostatic and relative pressure), I the unit tensor and
τ is the viscous stress tensor, which can be computed using the shear stress constitutive
relation expressed, in the linear case, as,

τ = 2µ ε (4.11)

where µ is the shear viscosity that depends on the fluid and ε is the deformation tensor
of the velocity depending on the velocity vector:

ε = 1
2
(
∇v + (∇v)T

)
(4.12)

Replacing equation (4.12) into (4.11) and the resulting expression into (4.10), the stress
tensor can be expressed as,

σ = µ
(
∇v + (∇v)T

)
+ (−p̃) I (4.13)

and, then, the divergence of σ is given by,

divσ = µ∇2v + µ∇ (div v)−∇p̃ (4.14)
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where ∇2v = vi,jj ei is the Laplacian of v.
Considering that div v = 0, as equation (4.5) shows, replacing (4.14) into (4.8) and

dividing the resultant equation by the density of the fluid, the motion equation for an
incompressible Newtonian fluid is expressed as,

v̇ + (∇v)v − ν∇2v + ∇p = b (4.15)

where ν is the kinematic viscosity, ν = µ/ρ, and p is the absolute pressure divided by the
density, p = p̃/ρ.

4.3.4 Conservation of the energy equation

The first law of thermodynamics for viscous incompressible fluids stands,

ρ0 cp
Dθ
Dt + div q −G = 0 (4.16)

where θ represents the temperature, cp is the specific heat of the fluid, G is the heat
generation per unit volume and qi is the heat transfer flux in the i-direction.

Replacing the definition of material derivative into (4.16), the advection-diffusion equa-
tion in viscous incompressible fluids, is then expressed as:

ρ0 cp
(
θ̇ + v ·∇θ

)
+ div q −G = 0 (4.17)

The conservation of momentum equation represents the motion of a viscous and in-
compressible fluid when the density variations are not important. However, when the fluid
is subjected to high temperatures, the variation of the density with the temperature may
be significant and buoyancy forces are developed. In order to consider their effects, an
extended form of the Boussinesq approximation is used in the conservation of momentum
equations. The artificial linear variation of the density with the temperature is expressed
as,

ρ = ρ0 (1− β (θ − θ0)) (4.18)

where β is the thermal expansion coefficient and θ0 is the reference temperature. This
equation is valid for the description of the body forces. Thus, the density in all other
situations is assumed to be that of the reference state, ρ0.

The gravitational force due to the artificial variation of the density with the tempera-
ture is included in the conservation of momentum equation by means of,

fg = ρ0 g (1− β (θ − θ0)) (4.19)

where g is the gravity acceleration vector.
At this point, it is deemed relevant to make a remark about the pressure (manual of

the ADINA-F, 2010). In equation (4.15), p is the rate between the absolute pressure, p̃,
and the density of the fluid, ρ. The absolute pressure is the sum of the relative pressure,
p̃r, and the hydrostatic pressure, p̃s, but, in many fluid flow problems, the value of the
hydrostatic pressure is much larger than the relative pressure. This fact can create nu-
merical instabilities and, in these cases, the relative pressure is usually taken as a variable
of the problem instead of the absolute pressure.

In order to avoid possible numerical instabilities, in the present implementation it was
decided to use a formulation where p in the conservation of momentum equation (4.15)
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is the relative pressure divided by the density2 and, then, only the buoyancy force also
divided by the density, fB, will be included in the referred equation,

v̇ + (∇v)v − ν∇2v + ∇p = b+ fB (4.20)

and:
fB = −β g (θ − θ0) (4.21)

The non-isothermal flows are characterized by the following dimensionless numbers
(Çengel, 2003):

• Grashof number, Gr: it is the ratio between buoyancy forces and viscous forces,

Gr =
gβL3

ref∆θ
ν2 (4.22)

where g is the Euclidean norm of gravity acceleration vector, ∆θ is the gradient of
temperatures and α is the thermal diffusivity:

α = k

ρ0 cp
(4.23)

• Prandtl number, Pr: it is computed as the ratio between the momentum diffusivity
and thermal diffusivity:

Pr = ν

α
(4.24)

• Rayleigh number, Ra: it is the most often used natural convection parameter:

Ra = Gr Pr =
gβL3

ref∆θ
να

(4.25)

Additionally, the relation between the Grashof and the square Reynolds number (Gr/Re2)
is also referred in the literature to classify the convection. The ratio Gr/Re2 represents the
importance of natural convection relative to forced convection. In the literature it is usually
accepted that natural convection is negligible when Gr/Re2 < 0.1, forced convection is
negligible when Gr/Re2 > 10 and both natural and forced convection are not negligible
when 0.1 > Gr/Re2 > 10.

4.4 Strong form of the problem

Consider the thermodynamic problem schematically represented in figure 4.1, where
Ω is the domain of the problem and Γ = Γt ∪ Γv = Γθ ∪ Γq represents the boundary.

The set of governing differential equations presented in section 4.3 constitute a nonlin-
ear system of partial differential equations in the domain of the problem, Ω, which require
appropriate boundary conditions on the contour, Γ, and initial conditions in the domain
to be solved.

The boundary conditions can be subdivided in two groups: (i) those regarding the heat
transfer problem (Γθ ∪ Γq such that Γθ ∩ Γq = ∅) and (ii) those regarding the fluid-flow
problem (Γt ∪ Γv such that Γt ∩ Γv = ∅). Both conditions are applied simultaneously.

2From now on, p denotes the relative pressure divided by the density.
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Ω

Γv

Γt

Γθ

Γq

Figure 4.1: Boundary conditions of the fluid dynamics problem.

The boundary and initial conditions that can be defined in the in-house code developed
within the thesis are the following,

v = v on Γv (4.26a)
t = t on Γt (4.26b)
θ = θ on Γθ (4.26c)
qn + q = 0 on Γq (4.26d)
v0 = v0 at t = t0 in Ω (4.26e)
θ0 = θ0 at t = t0 in Ω (4.26f)

where Ω = Ω∪Γ is the closure of the fluid domain, t = (ν∇v − p I)n is the ratio between
the traction3 and the density on the boundary Γt and v, t and θ are the prescribed values
of the velocity, traction and temperature on the boundaries, respectively.

The classical formulation of the strong form of the transient non-isothermal fluid-flow
problem reads as follows:

Obtain v, p and θ for each point x = xi ei ∈ Ω for all t ∈ [t0, t1], such that:

div v = 0 in Ω (4.27a)
v̇ + (∇v)v − ν∇2v + ∇p = b+ fB in Ω (4.27b)

− div q +G = ρ0 cp
(
θ̇ + v ·∇θ

)
in Ω (4.27c)

v = v on Γv (4.27d)
t = t on Γt (4.27e)
θ = θ on Γθ (4.27f)
qn + q = 0 on Γq (4.27g)
v0 = v0 at t = t0 in Ω (4.27h)
θ0 = θ0 at t = t0 in Ω (4.27i)

3In the literature it is common to refer t as a pseudotraction as it is not the real traction, t̂, computed
as: t̂ = σn. In this text, the formulation using the pseudotraction is presented even if it is referred to as
a traction.
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4.5 Weak form of the problem

The weak form associated to the system of governing equations and the respective
boundary and initial conditions renders a set of equations amenable to a (i) finite element
space discretization, and (ii) a finite difference time discretization.

Consider δv, δp and δθ arbitrary virtual functions such that δv = o on Γv and δθ = 0
on Γθ. Using these functions to weigh the governing equations on the domain and the
static boundary equilibrium equations, respectively, integrating the result and using the
definition of the pseudotraction, one obtains:∫

Ω
δv ·

(
v̇ + (∇v)v − ν∇2v + ∇p− b− fB

)
dΩ+

+
∫

Γt
δv ·

(
(ν∇v − p I)n− t

)
dΓt = 0

(4.28a)

−
∫

Ω
δpdiv v dΩ = 0 (4.28b)∫

Ω
δθ
(
−div q +G− ρ0 cp

(
θ̇ + v ·∇θ

))
dΩ +

∫
Γq
δθ (qn + q) dΓq = 0 (4.28c)

Applying the divergence theorem and parts integration to the latter (see details on
appendix C.1) renders the weak form of the problem:∫

Ω
δv · v̇ dΩ +

∫
Ω
δv · (∇v)v dΩ +

∫
Ω

∇δv : ν∇v dΩ−

−
∫

Ω
div δv p dΩ−

∫
Γt
δv · tdΓt −

∫
Ω
δv · b dΩ−

∫
Ω
δv · fB dΩ = 0

(4.29a)

−
∫

Ω
δp div v dΩ = 0 (4.29b)∫

Ω

(
∇δθ · q − δθ ρ0 cp θ̇

)
dΩ−

∫
Ω
δθ ρ0 cp v ·∇θ dΩ+

+
∫

Ω
δθ G dΩ +

∫
Γq
δθ q dΓq = 0

(4.29c)

The operator : in equation (4.29a) represents the scalar product between general second-
order tensors, A and B, and it is defined as:

A : B = tr
(
AT B

)
= Aij Bij (4.30)

where tr(·) is the trace operator.

4.6 Spatial discretization and residual vector

Considering that the closure of the domain, Ω, is subdivided into finite elements, a
spatial discretization of the weak form can be done.

The independent variables v(e) and p(e) in each element can be approximated by the
expressions,

v(e) = ψ(e)
v v(e) (4.31a)

p(e) = ψ(e)
p p(e) (4.31b)
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where v(e) and p(e) are the nodal vectors of velocity and pressure, respectively, and ψ(e)
v

and ψ(e)
p are the shape functions in an element defined as,

ψ(e)
v =

[
ψ1I ψ2I ... ψnI

]
(4.32a)

ψ(e)
p =

{
ψ1 ψ2 ... ψm

}
(4.32b)

where n and m are, respectively, the number of nodes of the element where the velocity
and pressure fields are approximated and I is the identity matrix. The variation of the
expressions (4.31) can be written as:

δv(e) = ψ(e)
v δv(e) (4.33a)

δp(e) = ψ(e)
p δp(e) (4.33b)

The spatial discretization of the temperature is given by the expression (3.30a) and,
consequently, the variation of that expression is given by (3.31a).

In the following it is considered that the body force vector in the domain and the
traction vector on the static boundary can be expressed as,

b(e) = ψ(e)
v b(e) (4.34a)

t
(e) = ψ(e)

v t(e) (4.34b)

where b(e) and t(e) are the nodal values of b(e) and t(e), respectively. The internal heat
generation, G, is approximated over the elemental domain as (3.32a). In the program
developed, the prescribed heat flux can only be null, i.e., q = 0. Consequently, the term
regarding the prescribed heat is not included in the following equations.

Considering the weak form (4.29) over a typical finite element and replacing the ex-
pressions (4.31), (4.33), (3.30a), (3.31a), (4.34) and (3.32a) into the mentioned equation,
one obtains term by term,∫

Ω(e)
δv(e) · v̇(e) dΩ(e) = δv(e)T

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) v̇(e) (4.35a)∫
Ω(e)

δv(e) ·
(
∇v(e)

)
v(e) dΩ(e) =

∫
Ω(e)

δv(e) ·
(
v

(e)
,i ⊗ ei

)
v(e) dΩ(e) =

=
∫

Ω(e)
δv(e) ·

(
ei · v(e)

)
v

(e)
,i dΩ(e) = δv(e)T

∫
Ω(e)

ψ(e)T
v

(
eTi ψ(e)

v v(e)
) (
ψ(e)
v

)
,i

dΩ(e) v(e)

(4.35b)∫
Ω(e)

∇δv(e) : ν∇v(e) dΩ(e) =
∫

Ω(e)

(
δv

(e)
,i ⊗ ei

)
:
(
νv

(e)
,j ⊗ ej

)
dΩ(e) =

=
∫

Ω(e)
δ v

(e)
i,j ν v

(e)
i,j dΩ(e) =

∫
Ω(e)

(
δv

(e)
,j · ei

)
ν
(
v

(e)
,j · ej

)
dΩ(e) =

= δv(e)T
∫

Ω(e)

((
ψ(e)T
v

)
,j

ei
)
ν

(
eTi

(
ψ(e)
v

)
,j

)
dΩ(e) v(e)

(4.35c)

−
∫

Ω(e)
div δv(e) p(e) dΩ(e) = −

∫
Ω(e)

δv
(e)
i,i p

(e) dΩ(e) =

= −
∫

Ω(e)

(
δv

(e)
,i · ei

)
p(e) dΩ(e) = −δv(e)T

∫
Ω(e)

(
ψ(e)T
v

)
,i

eiψ(e)
p dΩ(e) p(e)

(4.35d)

−
∫

Ω(e)
δp(e) div v(e) dΩ(e) = −

∫
Ω(e)

δp(e)
(
ei · v(e)

,i

)
dΩ(e) =

= −δp(e)T
∫

Ω(e)
ψ(e)T
p eTi

(
ψ(e)
v

)
,i

dΩ(e) v(e)
(4.35e)
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−
∫

Ω(e)
δv(e) · b(e) dΩ(e) = −δv(e)T

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) b(e) (4.35f)

−
∫

Γ(e)
t

δv(e) · t(e) dΓ(e)
t = −δv(e)T

∫
Γ(e)
t

ψ(e)T
v ψ(e)

v dΓ(e)
t t(e) (4.35g)

−
∫

Ω(e)
δv(e) · f (e)

B dΩ(e) = δv(e)T
∫

Ω(e)
ψ(e)T
v β gψ

(e)
θ

(
θ(e) − θ(e)

0

)
dΩ(e) (4.35h)∫

Ω(e)
∇δθ(e) · q(e) dΩ(e) = −δθ(e)T

∫
Ω(e)

B(e)T
θ D B(e)

θ dΩ(e) θ(e) (3.33a)

−
∫

Ω(e)
δθ(e) ρ cp θ̇

(e) dΩ(e) = −δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇

(e) (3.33b)∫
Ω(e)

δθ(e)G(e) dΩ(e) = δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ψ

(e)
θ dΩ(e) g(e) (3.33c)

−
∫

Ω
δθ ρ0 cp v ·∇θ dΩ = −δθ(e)T

∫
Ω(e)

ψ
(e)T
θ ρ0 cp

(
ψ(e)
v v(e)

)T
B(e)
θ dΩ(e) θ(e) (4.35i)

where the last terms of each of the expressions are written using the matrix notation,
being this the form implemented in the numerical code.

Hence, the weak form of the problem can be obtained replacing the expressions (4.35)
into (4.28):

δv(e)T
(∫

Ω(e)
ψ(e)T
v ψ(e)

v v̇(e) dΩ(e) +
∫

Ω(e)
ψ(e)T
v eTi ψ(e)

v v(e)
(
ψ(e)
v

)
,i

v(e) dΩ(e)+

+
∫

Ω(e)

(
ψ(e)T
v

)
,j

ei ν eTi
(
ψ(e)
v

)
,j

v(e) dΩ(e) −
∫

Ω(e)

(
ψ(e)T
v

)
,i

eiψ(e)
p p(e) dΩ(e)−

−
∫

Γ(e)
t

ψ(e)T
v ψ(e)

v dΓ(e)
t t(e) −

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) b(e)+

+
∫

Ω(e)
ψ(e)T
v β gψ

(e)
θ

(
θ(e) − θ(e)

0

)
dΩ(e)

)
= 0

(4.36a)

− δp(e)T
(∫

Ω(e)
ψ(e)T
p eTi

(
ψ(e)
v

)
,i

v(e) dΩ(e)
)

= 0 (4.36b)

− δθ(e)T
(∫

Ω(e)
B(e)T
θ D B(e)

θ dΩ(e) θ(e) +
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇+

+
∫

Ω(e)
ψ

(e)T
θ ρ0 cp

(
ψ(e)
v v(e)

)T
B(e)
θ dΩ(e) θ(e) −

∫
Ω(e)

ψ
(e)T
θ ψ

(e)
θ dΩ(e) g(e)

)
= 0

(4.36c)

Since δv(e), δp(e) and δθ(e) are arbitrary nodal vectors, the only possible solution of
the equation (4.36) is,

r(e) ≡


r(e)
v

r(e)
p

r(e)
θ

 = 0 (4.37)
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where r(e)
v , r(e)

p and r(e)
θ are the components of the elemental residual vector defined as:

r(e)
v =

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) v̇(e) +
∫

Ω(e)
ψ(e)T
v eTi ψ(e)

v v(e)
(
ψ(e)
v

)
,i

dΩ(e) v(e)+

+
∫

Ω(e)

(
ψ(e)T
v

)
,j

ei ν eTi
(
ψ(e)
v

)
,j

dΩ(e) v(e)−

−
∫

Ω(e)

(
ψ(e)T
v

)
,i

eiψ(e)
p dΩ(e) p(e) −

∫
Γ(e)
t

ψ(e)T
v ψ(e)

v dΓ(e)
t t(e)−

−
∫

Ω(e)
ψ(e)T
v ψ(e)

v dΩ(e) b(e) +
∫

Ω(e)
ψ(e)T
v β gψ

(e)
θ

(
θ(e) − θ(e)

0

)
dΩ(e)

(4.38a)

r(e)
p = −

∫
Ω(e)

ψ(e)T
p eTi

(
ψ(e)
v

)
,i

dΩ(e) v(e) (4.38b)

r(e)
θ =

∫
Ω(e)

B(e)T
θ D B(e)

θ dΩ(e) θ(e) +
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) θ̇+

+
∫

Ω(e)
ψ

(e)T
θ ρ0 cp

(
ψ(e)
v v(e)

)T
B(e)
θ dΩ(e) θ(e) −

∫
Ω(e)

ψ
(e)T
θ ψ

(e)
θ dΩ(e) g(e)

(4.38c)

The matrix form of the set of nonlinear system of differential equations (4.37) is,

r(e) =

M(e)
v O O

O O O
O O M(e)




v̇(e)

ṗ(e)

θ̇
(e)

+

+

K(e)
v + C(e) G(e) B(e)

G(e)T O O
O O K(e) + L(e)




v(e)

p(e)

θ(e)

−


f(e)
v

0
f(e)
θ

 (4.39)

where K(e)
v is the viscosity matrix, C(e) is the convection matrix, G(e) is the discrete

gradient operator of the pressure, G(e)T is the discrete divergence operator, M(e)
v is the

standard finite element mass matrix and f(e)
v is the force vector, which includes the con-

tributions of the body forces and the prescribed pseudotraction on the static boundary.
They can be computed as,

K(e)
v =

∫
Ω(e)

B(e)T
v νB(e)

v dΩ(e) (4.40a)

C(e) =
∫

Ω(e)
ψ(e)T
v

((
ψ(e)
v v(e)

)T
ei
) (
ψ(e)
v

)
,i

dΩ(e) (4.40b)

G(e) = −
∫

Ω(e)

(
∇ψ(e)

v

)T
ψ(e)
p dΩ(e) (4.40c)

M(e)
v =

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) (4.40d)

B(e) =
∫

Ω(e)
βψ(e)T

v gψ
(e)
θ dΩ(e) (4.40e)

L(e) =
∫

Ω(e)
ρ0 cpψ

(e)T
θ

(
ψ(e)
v v(e)

)T
B(e)
θ dΩ(e) (4.40f)

f(e)
v =

∫
Ω(e)

ψ(e)T
v ψ(e)

v b(e) dΩ(e) +
∫

Γ(e)
t

ψ(e)T
v ψ(e)

v t(e) dΓ(e)
t +

+
∫

Ω(e)
βψ(e)T

v gψ
(e)
θ θ

(e)
0 dΩ(e)

(4.40g)

f(e)
θ =

∫
Ω(e)

ψ
(e)T
θ ψ

(e)
θ dΩ(e) g(e) (4.40h)
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where g(e) is the elemental internal heat generation vector, θ(e)
0 is the elemental nodal

vector of initial temperatures and B(e)
v is the matrix that gathers the derivatives of the

shape functions defined as:

B(e)
v =

[
ψ1,1I ψ2,1I ... ψn,1I
ψ1,2I ψ2,2I ... ψn,2I

]
(4.41)

where I is the identity matrix. Matrices M(e) and K(e) are defined in equations (3.41b)
and (3.41a), respectively.

Replacing the temporal discretization of the velocities and temperature, given by equa-
tion (B.13) in appendix B.3, into (4.39), the elemental residual vector is given by:

r(e)t+∆t =

K(e)
v + C(e) + 1

γ∆t M(e)
v G(e) B(e)

G(e)T O O
O O K(e) + L(e) + 1

γ∆t M(e)


t+∆t 

v(e)

p(e)

θ(e)


t+∆t

−

−


f(e)
v

0
f(e)
θ


t+∆t

−


1
γ∆t M(e)

v O O
O O O
O O 1

γ∆t M(e)


t+∆t 

v(e)

p(e)

θ(e)


t

−

−


1−γ
γ M(e)

v O O
O O O
O O 1−γ

γ M(e)


t 

v̇(e)

ṗ(e)

θ̇
(e)


t

(4.42)

The global residual vector can be obtained by assembling the elemental vectors (4.42)
into their global counterparts. The nonlinear system of equations is,

rt+∆t = 0 (4.43)

and it will be solved to the free degrees of freedom using the Newton–Raphson method.

4.7 Tangent matrix

The tangent matrix of the presented problem can be computed through the perturba-
tion of the set of expressions (4.35). Hence, by imposing

∆v(e) = ψ(e)
v ∆v(e) (4.44a)

∆p(e) = ψ(e)
v ∆p(e) (4.44b)

∆θ(e) = ψ(e)
θ ∆θ(e) (3.46a)

∆v̇(e) = ψ(e)
v ∆v̇(e) (4.44c)

∆ṗ(e) = ψ(e)
v ∆ṗ(e) (4.44d)

∆θ̇(e) = ψ(e)
θ ∆θ̇(e) (3.46c)

and

∆δv(e) = o (4.45a)
∆δp(e) = 0 (4.45b)
∆δθ(e) = 0 (3.47a)
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one obtains:

∆
∫

Ω(e)
δv(e) · v̇(e) dΩ(e) = δv(e)T

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) ∆v̇(e) = δv(e)TM(e)
v ∆v̇(e) (4.46a)

∆
∫

Ω(e)
δv(e) ·

(
∇v(e)

)
v(e) dΩ(e) = ∆

∫
Ω(e)

δv(e) ·
(
ei · v(e)

)
v

(e)
,i dΩ(e) =

=
∫

Ω(e)
δv(e) ·

((
ei · v(e)

)
∆v(e)

,i +
(
ei ·∆v(e)

)
v

(e)
,i

)
dΩ(e) =

= δv(e)T
(∫

Ω(e)
ψ(e)T
v

(
eTi ψ(e)

v v(e)
) (
ψ(e)
v

)
,i

dΩ(e)+

+
∫

Ω(e)
ψ(e)T
v

((
ψ(e)
v

)
,i

v(e)eTi
)
ψ(e)
v dΩ(e)

)
∆v(e) = δv(e)TC(e)

T ∆v(e) (4.46b)

∆
∫

Ω(e)
∇δv(e) : ν∇v(e) dΩ(e) =

= δv(e)T
∫

Ω(e)

((
ψ(e)T
v

)
,j

ei
)
ν

(
eTi

(
ψ(e)
v

)
,j

)
dΩ(e) ∆v(e) =

= δv(e)TK(e)
v ∆v(e) (4.46c)

−∆
∫

Ω(e)
div δv(e) p(e) dΩ(e) = −

∫
Ω(e)

δv
(e)
i,i ∆p(e) dΩ(e) =

= −δv(e)T
∫

Ω(e)

(
ψ(e)T
v

)
,i

eiψ(e)
p dΩ(e) ∆p(e) = δv(e)TG(e)∆p(e) (4.46d)

−∆
∫

Ω(e)
δp(e) div v(e) dΩ(e) = −

∫
Ω(e)

δp(e)
(
ei ·∆v(e)

,i

)
dΩ(e) =

= −δp(e)T
∫

Ω(e)
ψ(e)T
p eTi

(
ψ(e)
v

)
,i

dΩ(e) ∆v(e) = δp(e)TG(e)T∆v(e) (4.46e)

−∆
∫

Ω(e)
δv(e) · b(e) dΩ = 0 (4.46f)

−∆
∫

Γ(e)
t

δv(e) · t(e) dΓ(e)
t = 0 (4.46g)

−∆
∫

Ω(e)
δv(e) · f (e)

B dΩ(e) = δv(e)T
∫

Ω(e)
ψ(e)T
v β gψ

(e)
θ dΩ(e)∆θ(e) (4.46h)

∆
∫

Ω(e)
∇δθ(e) · q(e) dΩ(e) = −δθ(e)T

∫
Ω(e)

B(e)T
θ D B(e)

θ dΩ(e) ∆θ(e) (4.46i)

−∆
∫

Ω(e)
δθ(e) ρ cp θ̇

(e) dΩ(e) = −δθ(e)T
∫

Ω(e)
ψ

(e)T
θ ρ cpψ

(e)
θ dΩ(e) ∆θ̇(e) (4.46j)

∆
∫

Ω(e)
δθ(e)G(e) dΩ(e) = 0 (3.48c)

−∆
∫

Ω
δθ ρ0 cp v ·∇θ dΩ = −δθ(e)T

∫
Ω(e)

ψ
(e)T
θ ρ0 cp

(
ψ(e)
v v(e)

)T
B(e)
θ dΩ(e) ∆θ(e) (4.46k)
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Figure 4.2: Quadrilateral Q2Q1 and triangular P2P1 elements for the coupled fluid-flow
and heat transfer problem.

After replacing the temporal discretization into the (4.46) expressions, the elemental
tangent matrix is given by,

K(e)t+∆t =

K(e)
v + C(e)

T + 1
γ∆tM

(e)
v G(e) B(e)

G(e)T O O
E(e) O F(e)


t+∆t

(4.47)

where:

E(e)t+∆t =
∫

Ω(e)
ρ0 cpψ

(e)T
θ

(
ψ

(e)
θ

)
,i
θ(e)t+∆t eTi ψ(e)

v dΩ(e) (4.48a)

F(e)t+∆t = K(e)t+∆t + L(e) + 1
γ∆t M(e) (4.48b)

In the code developed, the thermal and fluid properties were considered constant and,
hence, they do not depend on the temperature, velocity and pressure. The formula-
tion presented constitutes a strict Boussinesq model where the thermophysical properties
are treated as constant and the work done by pressure and viscous dissipation is ne-
glected (Reddy and Gartling, 2010).

The global tangent matrix is obtained by assembling of all elemental tangent matrices.

4.8 Computational considerations and element types

The considered element types are the isoparametric quadratic Q2Q1 and P2P1 intro-
duced by Taylor and Hood (1973) and referred in the literature as Taylor–Hood elements.
Figure 4.2 shows the elements shape and the independent variables defined per node.

In both elements the number of degrees of freedom per node is variable and, conse-
quently, the polynomial degree of the shape functions is also changeable: (i) in the case of
the elements P2P1, linear shape functions are used to interpolate the pressure field, while
those used to interpolate the velocities are quadratic; (ii) in the case of the elements Q2Q1,
the shape functions to interpolate the pressure are bilinear and those used to interpolate
the velocities are biquadratic.

These elements were chosen as they satisfy the Ladyzhenskaya-Babǔska-Brezzi (LBB)
stability condition — see Brezzi and Fortin (1991, page 57) — and present quadratic
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Element type M(e) K(e) C(e), C(e)
T G(e) f(e)

b f(e)
t

p nG p nG p nG p nG p nG p nG

P2P1 4 6 2 3 5 7 2 3 4 6 4 6
Q2Q1 4 3× 3 4 3× 3 6 4× 4 3 2× 2 4 3× 3 4 3

Table 4.1: Polynomial degree (p) of the integrand function and number of Gauss points
(nG) required for the numerical integration.

convergence rates. Further information about the LBB condition can be consulted in
appendix C.2.

The representation of the geometry is the same as the one used for the velocity variable,
i.e., x = ψv x.

The numerical integration is computed using the Gauss quadrature. The number
of Gauss points required to integrate exactly the residual vector terms and the tangent
matrix were determined considering a constant determinant of the Jacobian. In the case
of quadrilateral elements, the Gauss–Legendre quadrature was employed, while in the case
of triangular elements specific rules were programmed (Cowper, 1973).

The integrand with a maximum polynomial degree is the term regarding the convective
matrix. In the case ofQ2Q1 elements, 4×4 Gauss points were used in the integration, while
in the case of P2P1 elements, 7 points were employed. Table 4.1 shows the polynomial
degree of the integrands and the number of Gauss points required to integrate the matrices
M(e), K(e), C(e), C(e)

T and G(e) and the vectors f(e)
b and f(e)

t , given by:

f(e)
b =

∫
Ω(e)

ψ(e)T
v ψ(e)

v dΩ(e) b(e) (4.49a)

f(e)
t =

∫
Γ(e)
t

ψ(e)T
v ψ(e)

v dΓ(e)
t t(e) (4.49b)

4.9 Stabilization of the convective term: SUPG method

In problems with dominant convection, the hyperbolic Navier–Stokes equations and the
heat transfer equation (or advection-diffusion equation) can present numerical instabilities
when solved using the FEM. Brooks and Hughes (1982) originally proposed a formulation
to stabilize the convective term using the concept of SUPG (streamline upwind/Petrov–
Galerkin). In the present text, a stabilized formulation of the equation based in the works
of Tezduyar and Osawa (2000) and Campelo (2013) is presented.

The weak form of the coupled heat transfer and fluid-flow equations including the
convective stabilization term can be written as follows,∫

Ω
δv · v̇ dΩ +

∫
Ω
δv · (∇v)v dΩ +

∫
Ω

∇δv : ν∇v dΩ−

−
∫

Ω
div δv p dΩ−

∫
Γt
δv · tdΓt −

∫
Ω
δv · b dΩ−

∫
Ω
δv · fB dΩ+

+
∫

Ω
τSUPG (∇δv)v · rSUPG dΩ = 0

(4.50a)
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−
∫

Ω
δpdiv v dΩ = 0 (4.29b)∫

Ω
(∇δθ · q − δθ ρ cp · θ) dΩ−

∫
Ω
δθ ρ cp v ·∇θ dΩ+

+
∫

Ω
δθ G dΩ +

∫
Ω
τSUPGθ v ·∇δθ rSUPGθ dΩ = 0

(4.50b)

where τSUPG and τSUPGθ are the stabilization parameters.
The stabilization terms are computed over a finite element and, introducing the spatial

discretization at (t+ ∆t), they are:∫
Ω(e)

τ
(e)
SUPG

(
∇δv(e)

)
v(e) · r(e)

SUPG dΩ(e) =

= δv(e)T
(
τ

(e)t
SUPG

∫
Ω(e)

(
ψ(e)T
v

)
,i

(
eTi ψ(e)

v v(e)
)
r

(e)
SUPG dΩ(e)

)
(4.51a)

∫
Ω(e)

τ
(e)
SUPGθ v

(e) ·∇δθ(e) r
(e)
SUPGθ dΩ(e) =

= δθ(e)T
(
τ

(e)t
SUPGθ

∫
Ω(e)

B(e)T
θ ψ(e)

v v(e) r
(e)
SUPGθ dΩ(e)

)
(4.51b)

The elemental residual vectors of the conservation of momentum equation, r(e)
SUPG, and

the residual of the advection-diffusion equation, r(e)
SUPGθ, are calculated as:

r
(e)
SUPG = v̇(e) +

(
∇v(e)

)
v(e) − ν∇2v(e) + ∇p(e) − b(e) − f (e)

B (4.52a)

r
(e)
SUPGθ = ρ0 cp

(
θ̇(e) + v(e) ·∇θ(e)

)
+ div q(e) −G(e) (4.52b)

The τ (e)t
SUPG and τ (e)t

SUPGθ are considered constant over each element4 and they are com-
puted with the data of the previous time step t5. There are several definitions of these
constants; the interested reader can consult the works of Shakib et al. (1991), Tezduyar
et al. (1992), Franca and Frey (1992) or Codina (2000). Following Tezduyar and Os-
awa (2000), in the present formulation, the stabilization constant of the Navier–Stokes
equations is computed as the inverse of the r-norm (set equal to 2) of a vector τ (e)t

SUPG

with components 1/τ (e)t
S1 , 1/τ (e)t

S2 and 1/τ (e)t
S3 . The same assumption is considered for the

stabilization term of the advection-diffusion equation, hence,

τ
(e)t
SUPG =

 1(
τ

(e)t
S1

)r + 1(
τ

(e)t
S2

)r + 1(
τ

(e)t
S3

)r
−1/r

(4.53a)

τ
(e)t
SUPGθ =

 1(
τ

(e)t
S1θ

)r + 1(
τ

(e)t
S2θ

)r + 1(
τ

(e)t
S3θ

)r
−1/r

(4.53b)

4The paper of Tezduyar and Osawa (2000) refers literally: “it is conceivable that we calculate a separate
τ for each element node, or degree of freedom, or element equation”.

5It can be also computed at t+ ∆t but, in this case, the scalars τSUPG will introduce additional terms
in the tangent matrix.
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where τS1, τS2 and τS3 introduce the stabilization for the advection-, transient- and
diffusion-dominated problems, respectively. Each component of the vector can be com-
puted as,

τ
(e)t
S1 = ‖C

(e)t‖
‖C(e)t

τ ‖
τ

(e)t
S1θ = ‖C

(e)t
θ ‖

‖C(e)t
θτ ‖

τ
(e)t
S2 = ∆t

2
‖C(e)t‖
‖M(e)t

τ ‖
τ

(e)t
S2θ = ∆t

2
‖C(e)t

θ ‖
‖M(e)t

θτ ‖

τ
(e)t
S3 = τ

(e)t
S1 Re(e)t τ

(e)t
S3θ = τ

(e)t
S1θ Re

(e)t
θ

where Re(e)t is the finite element Reynolds number and C(e)t
τ and M(e)t

τ are the elemental
stabilization matrices defined by the following expressions:

Re(e)t = ‖v
(e)t‖2

ν

‖C(e)t‖
‖C(e)t

τ ‖
(4.55a)

C(e)t
τ =

∫
Ω(e)

(
ψ(e)
v

)T
,i

((
ψ(e)
v v(e)t

)T
ei
) ((

ψ(e)
v v(e)t

)T
ej
) (
ψ(e)
v

)
,j

dΩ(e) (4.55b)

M(e)t
τ =

∫
Ω(e)

(
ψ(e)
v

)T
,i

((
ψ(e)
v v(e)t

)T
e(e)
i

)
ψ(e)
v dΩ(e) (4.55c)

The equivalent stabilization terms of the advection-diffusive equations are:

Re
(e)t
θ = ρ0 cp ‖v(e)t‖2

k

‖C(e)t
θ ‖

‖C(e)t
θτ ‖

(4.56a)

C(e)t
θ =

∫
Ω(e)

ψ
(e)T
θ

(
ψ(e)
v v(e)t

)T
B(e)
θ dΩ(e) (4.56b)

C(e)t
θτ =

∫
Ω(e)

B(e)T
θ

(
ψ(e)
v v(e)t

) (
ψ(e)
v v(e)t

)T
B(e)
θ dΩ(e) (4.56c)

M(e)t
θτ =

∫
Ω(e)

B(e)T
θ ψ(e)

v v(e)tψ
(e)
θ dΩ(e) (4.56d)

The L2 norms used are defined in Layton (2008) and for a generic vector, v, and
matrix, A, such that Aij =

∫
Ω aij (x) dΩ, they can be written as,

‖v‖2 =
∫

Ω

n∑
i=1

vi vi dΩ =
∫

Ω
vT v dΩ (4.57a)

‖A‖2 =
∫

Ω

m∑
i,j=1

aij aij dΩ =
m∑

i,j=1
Aij Aij = tr

(
AT A

)
(4.57b)

where n is the number of components of the vector and m is the dimension of the matrix.
The reader should notice that M(e)t

τ =
(
C(e)t

)T
and M(e)t

θτ =
(
C(e)t
θ

)T
, as it is reported

in Tezduyar and Osawa (2000, Remark 12, page 417).
The elemental residual vector can be obtained from (4.51),

r(e)t+∆t =



r(e)
v + r(e)

SUPGv

r(e)
p

r(e)
θ + r(e)

SUPGθ



t+∆t

(4.58)
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where the elemental terms due to the stabilization are:

r(e)t+∆t
SUPGv = τ

(e)t
SUPG

∫
Ω(e)

(
ψ(e)
v

)T
,i

(
eTi ψ(e)

v v(e)
)
r

(e)
SUPG dΩ(e) (4.59a)

r(e)t+∆t
SUPGθ = τ

(e)t
SUPGθ

∫
Ω(e)

B(e)T
θ ψ(e)

v v(e) r
(e)
SUPGθ dΩ(e) (4.59b)

The global residual vector can be obtained by assembling the elemental ones.
The inclusion of the stabilization terms into the elemental tangent matrix leads to,

K(e)t+∆t =

K(e)
v + C(e)

T + 1
γ∆tM

(e)
v + C(e)

SUPG G(e) + G(e)
SUPG B(e) + B(e)

SUPG

G(e)T O O
E(e) + E(e)

SUPGθ O F(e) + F(e)
SUPGθ


t+∆t

(4.60)
where the additional matrices C(e)

SUPG, G(e)
SUPG, B(e)

SUPG, E(e)
SUPG and F(e)

SUPG can be com-
puted as:

C(e)t+∆t
SUPG = τ

(e)t
SUPG

∫
Ω(e)

[(
ψ(e)
v

)T
,i
r

(e)
SUPG eTi ψ(e)

v +

+
(
ψ(e)
v

)T
,i

((
ψ(e)
v v(e)t+∆t

)T
ei
) ( 1

γ∆t ψ
(e)
v +

(
eTj ψ(e)

v v(e)t+∆t
) (
ψ(e)
v

)
,j

+

+
((
ψ(e)
v

)
,i

v(e)t+∆t eTj
)
ψ(e)
v − ν

(
ψ(e)
v

)
,jj

)]
dΩ(e)

(4.61a)

G(e)t+∆t
SUPG = τ

(e)t
SUPG

∫
Ω(e)

(
ψ(e)
v

)T
,i

((
ψ(e)
v v(e)t+∆t

)T
ei
) (

ej
(
ψ(e)
p

)
,j

)
dΩ(e) (4.61b)

B(e)t+∆t
SUPG = τ

(e)t
SUPG

∫
Ω(e)

(
ψ(e)
v

)T
,i

((
ψ(e)
v v(e)t+∆t

)T
ei
)
β gψ

(e)
θ dΩ(e) (4.61c)

E(e)t+∆t
SUPGθ = τ

(e)t
SUPGθ

∫
Ω(e)

B(e)T
θ ψ(e)

v

[
r

(e)
SUPGθ+

+v(e)
(
B(e)
θ θ(e)t+∆t

)T
ψ(e)
v

]
dΩ(e)

(4.61d)

F(e)t+∆t
SUPG = τ

(e)t
SUPGθ

∫
Ω(e)

B(e)T
θ ψ(e)

v v(e)t+∆t
(
ρ0 cp
γ∆t ψ

(e)
θ +

+ρ0 cp
(
ψ(e)
v v(e)t+∆t

)T
B(e)
θ − kij

(
ψ

(e)
θ

)
,ij

)
dΩ(e)

(4.61e)

The evaluation of the first and second derivatives of the shape functions required for
the computation of the previous expressions can be consulted in appendix B.2.

The global tangent matrix necessary to solve the nonlinear system of equations will be
obtained by assembling the elemental ones.

An additional term proposed by Tezduyar and Osawa (2000), LSIC (least-squares on
incompressibility constant), can be included to improve the stability of flows at large
Reynolds number.
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4.10 Stream function computation

The stream function is often used as an output in problems of fluid dynamics. The
stream function is, by definition, a function ϕ such that,

v1 = ∂ϕ

∂x2
and v2 = − ∂ϕ

∂x1
(4.62)

and it represents the remaining nonzero component of the vector potential, as it was
defined in Reddy and Gartling (2010), or the locus of points that are everywhere tangent
to the instantaneous velocity vector, as it is defined in Diersch (2014).

The stream function has to be obtained for each node and the results are presented in
form of streamlines6, i.e., lines with constant stream function value.

The most common methods to compute the stream function in the finite element theory
are: (i) boundary integral method and (ii) vorticity equation integrator. The first method
consists of considering the value of the stream function in each node by integrating all
sides of the finite element using the following expression reported in Reddy and Gartling
(2010):

δϕ =
∫ B

A
(v1n1 + v2n2) ds (4.63)

Proceeding as in Diersch (2014), i.e., using the shape functions for the velocity and the
transformation of coordinates to integrate numerically, the following expression is ob-
tained,

δϕ =
∫ 1

−1

(
∂ψθ
∂ξ

x2ψθv1 + ∂ψθ
∂ξ

x1ψθv2

)
dξ (4.64)

where ψθ is the shape function for a one-dimensional element, x1 and x2 are respectively
vectors which group the horizontal and vertical coordinates of the side nodes and v1 and
v2 are vectors whose components are the horizontal and vertical velocity at each side node.

The second method consists of solving the Poisson equation,

−∇2ϕ = ω (4.65)

where ω is the vorticity function.
The previous equation can be cast into a finite element formulation, generating the

following elemental matrix problem,∫
Ω(e)

(
∇ψ(e)

θ

)T (
∇ψ(e)

θ

)
dΩ(e)ϕ(e) =

∫
Ω(e)

(
ψ

(e)T
θ,1 ψ

(e)
θ v(e)

2 −ψ
(e)T
θ,2 ψ

(e)
θ v(e)

1

)
dΩ(e)

(4.66)
where:

ψ
(e)
θ,1 = ∂ψ

(e)
θ

∂x1
(4.67a)

ψ
(e)
θ,2 = ∂ψ

(e)
θ

∂x2
(4.67b)

By assembling the previous elemental system of equations, the global matrix problem
is obtained and can be solved by prescribing the value of the stream function at one point.

The developed routine uses the above mentioned method (ii) for the computation of
the stream functions.

6Several definitions of streamlines are possible as function of the considered fluid dynamics problem.
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4.11 Verification examples

4.11.1 Preliminary comments

In the present section, six examples are presented. The objective is to verify the
code by comparing the results obtained with solutions given by other authors or with the
analytical solution described in the literature. The verification examples presented and
discussed are the following:

• Stokes flow with applied body forces in the domain (section 4.11.2). It is a simple
problem where the analytical solution is known. The rate of convergence of the
quadrilateral and triangular elements is also evaluated.

• Laminar Couette steady state flow (section 4.11.3). This problem is designed to
verify the code when a steady state regime is considered and to illustrate the pre-
scription of traction in the boundaries.

• Lid-driven cavity flow (section 4.11.4). It is a typical problem of fluids that is solved
for different Reynolds numbers.

• Laminar Couette transient flow (section 4.11.5). This application is designed to
verify the code developed in a transient analysis.

• Differentially heated square cavity (section 4.11.6). This example demonstrates the
use of the code when non-isothermal fluids are involved.

• Uniform heating at bottom wall (section 4.11.7). This case aims at explaining the
development of convective cells in cavities (or Bénard cells), similar to those expected
to be developed in the cavity of the tubular GFRP profiles subjected to fire.

The Newton–Raphson is used to solve the resulting system of equations (see ap-
pendix B.6 for further information).

4.11.2 Stokes flow with body forces in the domain

In this first verification example, the domain of the flow problem is a square of 1 m
side length with both components of the velocity vector equal to 0 m/s on the boundaries.
The volume forces are applied in all the domain and the components in each direction are,

b1 = (12− 24x2)x4
1 + (−24 + 48x2)x3

1 +
(
−48x2 + 72x2

2 − 48x3
2 + 12

)
x2

1+

+
(
−2 + 24x2 − 72x2

2 + 48x3
2

)
x1 + 1− 4x2 + 12x2

2 − 8x3
2

(4.68a)

b2 =
(
8− 48x2 + 48x2

2

)
x3

1 +
(
−12 + 72x2 − 72x2

2

)
x2

1+

+
(
4− 24x2 + 48x2

2 − 48x3
2 + 24x4

2

)
x1 − 12x2

2 + 24x3
2 − 12x4

2
(4.68b)

where x1 and x2 are the components of the position vector.
The body forces applied are quadratic, according to the expression (4.34a). Hence, in

order to exactly consider the body forces defined by equations (4.68), these expressions
were directly introduced in the code and computed in all Gauss points — making the
transformation of the natural coordinates, (ξ, η), into the global ones, (x1, x2).
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(a) Velocity resultant field. (b) Pressure field.

Figure 4.3: Numerical results of the Stokes flow problems.

The exact solution of the problem is provided by Donea and Huerta (2003):

v1 = x2
1 (1− x1)2

(
2x2 − 6x2

2 + 4x3
2

)
(4.69a)

v2 = −x2
2 (1− x2)2

(
2x1 − 6x2

1 + 4x3
1

)
(4.69b)

p = x1 (1− x1) (4.69c)
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(a) Vertical velocity component distribution.
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(b) Kinematic pressure distribution.

Figure 4.4: Comparison between exact and numerical solutions along the line x2 = 0.5.

The viscosity and density of the fluid are taken equal to the unity. A prescribed
pressure equal to zero is imposed in the node located at x1 = 0 and x2 = 0. Figure 4.3
shows the resultant velocity and pressure fields obtained using a regular mesh of 8 × 8
quadrilateral elements. Figure 4.4 displays the vertical component of the velocity and
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(a) Convergence of velocity.
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(b) Convergence of pressure.

Figure 4.5: Convergence of the error norms with h refinement.

pressure along the line x2 = 0.5. An excellent agreement between the numerical and the
exact results is observed.

A convergence study considering different meshes was carried out. The velocity and
pressure error norms,

errorv =
∫

Ω (vex − vnum) · (vex − vnum) dΩ∫
Ω vex · vex dΩ (4.70a)

errorp =
∫

Ω (pex − pnum)2 dΩ∫
Ω p

2
ex dΩ (4.70b)

were employed to assess the convergence of the results with the mesh refinement, for both
elements. The superscript num means numerical (result computed using the finite element
method) and ex means exact (results obtained using the analytical solution). The error
convergence results are plotted in figure 4.5 and reported in table 4.2. The geometry of
the meshes employed is plotted in figure 4.6.

The convergence rate obtained for the velocity is 6, as quadratic shape functions are
used to approximate the velocity field, and that obtained for the pressure is 4, as linear
shape functions are used to approximate the pressure. These values can be compared with
those reported by Thatcher (1990, Table 1, page 351), where the convergence rates of the
velocity and the pressure are 3 and 2, respectively. At this point the reader should notice
that the rates obtained in the reference paper are half of those presented in the current
work, as the error measure is different. The definition of the error used in the mentioned
paper is,

‖e‖ = c hα ⇒ log‖e‖ = logc+ α logh (4.71)
where ‖e‖ is the error and α is the convergence rate. In the present work, the results
for the error squared are presented, being easy to demonstrate that the convergence rate
obtained in the present work is twice the one presented in the reference. For both elements
the optimal convergence rate is observed.
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(a) 2× 2Q2Q1.
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(b) 4× 4Q2Q1.
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(c) 8× 8Q2Q1.
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(d) 16× 16Q2Q1.
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(e) 32× 32Q2Q1.
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(f) 2× 2P2P1.
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(g) 4× 4P2P1.
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(h) 8× 8P2P1.
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(i) 16× 16P2P1.
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(j) 32× 32P2P1.

Figure 4.6: Meshes used for the convergence study.
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Meshes h Q2Q1 P2P1
2× 2 0.5 0.024593364444810 0.142185231568019
4× 4 0.25 4.706966526871706 · 10−4 0.002681018324911
8× 8 0.125 7.576532572879776 · 10−6 4.372319249098789 · 10−5

16× 16 0.0625 1.190251088290493 · 10−7 6.973661797906820 · 10−7

32× 32 0.03125 1.861956159615986 · 10−9 1.101939070327104 · 10−8

SLOPE 1:5.9259 1:5.9151
(a) Velocity error norm value for each mesh.

Meshes h Q2Q1 P2P1
2× 2 0.5 0.062499999998323 0.061054973821512
4× 4 0.25 0.003908197073506 0.003827536665808
8× 8 0.125 2.441520720932675 · 10−4 2.263938183118387 · 10−4

16× 16 0.0625 1.525885251115168 · 10−5 1.400812572463752 · 10−5

32× 32 0.03125 9.536746956778950 · 10−7 8.743568722643320 · 10−7

SLOPE 1:4.0001 1:4.0277
(b) Pressure error norm value for each mesh.

Table 4.2: Error norms computed for the velocity and the pressure using meshes with 2,
4, 8, 16 and 32 divisions.

4.11.3 Laminar Couette steady state flow

A Couette flow consists of a laminar flow between two infinite parallel plates, one
of which is moving with a horizontal velocity V1 (the vertical velocity is equal to 0).
Figure 4.7a discloses the geometry of the problem.

The exact solution of this problem is given by,

v1 = V1
h

(
x2 + h

2

)
− 1

2µ
∂p

∂x1

(
h2

4 − x
2
2

)
(4.72a)

v2 = 0 (4.72b)

which shows that the horizontal component of the velocity depends on the pressure gra-
dient in the horizontal direction.

In order to reproduce the results obtained by Taylor and Hood (1973), the gradients of
pressure considered were 0.25, 0 and (−0.25), the velocity of the top plate was set as 3 and
the density and viscosity of the fluid were taken as unity. The value of h was taken equal
to 6. A mesh with 3 quadrilateral elements with side length equal to 2 was created, as
depicted in figure 4.7b. The value of the traction vector on the right and left sides of the
domain are presented in table 4.3. Figure 4.8 portrays the computed horizontal velocity
component vs. the exact solution.

The exact solution for the velocity field (4.72) is biquadratic. The exact pressure
field is constant. As the adopted approximation for the discretization of the problem is
biquadratic and bilinear for the velocity and pressure fields, respectively, the exact solution
was reproduced. Notice that this was only possible due to the simplicity of the geometry
of the problem: the Jacobian of the transformation is constant, hence leading to the exact
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(a) Couette flow problem.
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(b) Mesh and boundary conditions.

Figure 4.7: Geometry of the Couette flow problem and the respective finite element model.
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Table 4.3: Traction value at the
boundaries for the studied cases.

Figure 4.8: Horizontal component of the velocity
in a Couette flow between parallel plates.

evaluation of all the integrals. Moreover, one element would be sufficient to exactly solve
the problem.

4.11.4 Lid-driven cavity flow

The lid-driven cavity flow problem is a typical benchmark problem, whose solution,
for different Reynolds number, can be consulted in several publications as, e.g., Donea
and Huerta (2003), Campelo (2013), Ramaswamy (1988), Reddy and Gartling (2010)
and Holdeman (2010), among others.

The square cavity with unit length side has three fixed walls and one — top side —
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(b) Nonuniform mesh of 16× 16P2P1 elements.

Figure 4.9: Lid-driven cavity.

moving with an horizontal velocity equal to V1 (the vertical velocity is equal to 0). Fig-
ure 4.9a shows the geometry of the problem and the boundary conditions. In the lower left
corner, the pressure value is prescribed as zero in order to archive a nonsingular system
of equations. The horizontal velocity of the upper corners can be assumed equal to 0
(non-leaky cavity) or equal to V1. In the present work, the second possibility is considered
and, consequently, in these points a singularity in the pressure field is introduced, being
the respective value equal to infinity.

The cavity is discretized with a nonuniform mesh of 16 × 16P2P1 elements, see fig-
ure 4.9b. The Navier–Stokes solution is characterized by the Reynolds number, which can
be calculated for the present problem as,

Re = V1 Lref
ν

(4.73)

where the reference length, Lref , is the side of the cavity. In the presented solutions, the
velocity of the upper side, V1, is variable as a function of the Reynolds number and the
kinematic viscosity of the fluid, ν, is taken as 1 m2/s. The problem is solved for Reynolds
numbers equal to 1, 100, 400 and 1000.

The nonlinear system of equations is solved using the iterative Newton–Raphson
method in which an initial solution is required. Hence, for the problems with Reynolds
numbers of 1, 100 and 400, the initial solution is set to null velocity and pressure in all
nodes. In the problem with Re = 1000 the initial solution is the solution of the problem
with Re = 400, as no convergence is attained considering null initial velocity and pres-
sure. All the numerical analyses were carried out in steady state regime and using a pure
Galerkin formulation without including any stabilization method.

Figure 4.10 depicts a comparison between the horizontal velocity along x1 = 0.5 com-
puted using the implemented code and that presented by Donea and Huerta (2003). The
continuous line is the solution obtained using the developed code and the marks are the
results presented in the reference. The code implemented is capable of accurately repro-
ducing the numerical solution of the problem, when an adequate mesh size is employed.

Figure 4.11 shows the resultant velocity and the streamlines obtained for different
Reynolds numbers. These results were also compared with Campelo (2013) and good
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Figure 4.10: Dimensionless horizontal velocity profile at the vertical centerline for the
lid-flow cavity with different Reynolds numbers.

agreement between both solutions is observed.
A study of the mesh convergence to the solution of the problem when Re = 1000

was carried out considering different meshes with uniform and nonuniform configurations.
Figure 4.12 shows the geometry of the meshes and figure 4.13 displays the norm of the
residual vector obtained for each iterative step using the different meshes.

Figure 4.13 shows that no convergence is attained with the 8× 8Q2Q1 uniform mesh,
see figure 4.12a, as this mesh is not able to reproduce the velocity gradient in the vicinity
of the walls. For all the other meshes a quadratic convergence of the iterative error in the
asymptotic limit of the solution is observed.

In appendix D the reader can consult further verifications of the code for higher
Reynolds numbers.
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(a) Velocity resultant field, Re = 1. (b) Streamlines, Re = 1.

(c) Velocity resultant field, Re = 100. (d) Streamlines, Re = 100.

(e) Velocity resultant field, Re = 400. (f) Streamlines, Re = 400.

(g) Velocity resultant field, Re = 1000. (h) Streamlines, Re = 1000.

Figure 4.11: Resultant velocity and streamlines obtained for different Reynolds numbers.
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(a) Uniform 8× 8Q2Q1.
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(b) Uniform 16× 16Q2Q1.
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(c) Uniform 32× 32Q2Q1.
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(d) Nonuniform 8× 8P2P1.
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(e) Nonuniform 16× 16P2P1.

Figure 4.12: Meshes defined for the mesh convergence study.
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(a) Uniform meshes (Q2Q1 elements).
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(b) Nonuniform meshes (P2P1 elements).

Figure 4.13: Results of the convergence mesh study.
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Figure 4.14: Transient Couette problem.

4.11.5 Laminar Couette transient flow

This section outlines the transient development of a Couette flow, which was defined
in section 4.11.3, when ∂p

∂x1
= 0. The analytical solution of the problem is reported

in Schlichting (1960, page 92) and is given by,

v1
V1

=
∞∑
n=0

erfe (2n η1 + η)−
∞∑
n=0

erfe (2 (n+ 1) η1 − η) (4.74)

where erfe(x) is the error function and:

η1 = h

2
√
νt

(4.75a)

η = x2

2
√
νt

(4.75b)
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Ra ν and κ β

103 1.0 100
105 1.0 10 000
106 1.0 100 000

Figure 4.15: Geometry and boundary
conditions of the differentially heated
square cavity.

Table 4.4: Parameters of the differen-
tially heated square cavity.

In this example, 100 terms of the series were considered to compute the approximation
of the exact solution, which are sufficient for the required precision.

The finite element model consists of a mesh of 6 quadrilateral elements with dimensions
2×1. The kinematic viscosity was set as 0.01 m2/s and, initially, the fluid is at rest, being
the pressure equal to zero at all points. The transient analysis was carried out considering
a total time of 1000 seconds and a time step of 1 second. The Euler backward scheme was
used. Figure 4.14 shows the results obtained for different time steps.

It can be deemed that the numerical results represent with good accuracy the exact
solution.

4.11.6 Differentially heated square cavity

This verification example is a classical benchmark test that consists of a square cavity
with a temperature gradient between two opposite walls. Numerical results of this problem
are provided by several authors, e.g., Donea and Huerta (2003) and De Vahl Davis (1983).
The geometry of the problem and the boundary conditions are depicted in figure 4.15.

The numerical solution is obtained using a regular mesh of 8 × 8 quadrilateral ele-
ments. The value of the constants considered are reported in table 4.4. The Rayleigh
number defined in equation (4.25) is evaluated considering g = g e2, where g is set to
(−10), Lref is the side length of the cavity and ∆θ is the temperature difference be-
tween the horizontal walls. All thermal constants and properties of the fluid which are
not explicitly mentioned in the text are taken as unity. The problems with a Rayleigh
number Ra = 103 and Ra = 105 were solved using a steady state analysis, while that
with Ra = 106 was performed using a transient analysis with a total time of 1.0, a time
step of 0.01 and the Crank–Nicolson scheme. For problems with high Rayleigh number
no convergence is attained when a steady state analysis is performed. Figure 4.16 shows
the comparison between the temperature fields obtained in the developed code and those
reported in De Vahl Davis (1983). A good agreement can be observed for the different
problems tested.

However, regarding the numerical results obtained for Ra = 105 and Ra = 106, the
mesh is visible in the vicinity of the walls and, consequently, more refined meshes have to
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(a) Temperature field Ra = 103. (b) Reference (De Vahl Davis, 1983).

(c) Temperature field Ra = 105. (d) Reference (De Vahl Davis, 1983).

(e) Temperature field Ra = 106. (f) Reference (De Vahl Davis, 1983).

Figure 4.16: Graphical results of the differentially heated square cavity problem.
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Figure 4.17: Geometry and boundary
conditions of the bottom heated square
cavity.

Table 4.5: Bottom heated square cavity.

be employed to obtain accurate results. A study about this fact is discussed in appendix E,
where further verifications of the numerical results of this problem can be consulted for
different meshes.

4.11.7 Uniform heating at bottom wall

The objective of this example is to illustrate that the code is able to simulate the
generation of convective cells due to natural convection, similar to those that should
appear in the air enclosed in the cavities of GFRP tubular cross sections. This example
is reported in Basak et al. (2006). The geometry of the problem and boundary conditions
are summarized in figure 4.17.

The cavity has a unit length and the different values of the constants used in the
cases analysed are reported in table 4.5. The gravity acceleration is taken as (−10) in the
vertical direction and the kinematic viscosity of the fluid and ∆θ are set equal to unity.

All analyses are carried out using a regular quadrilateral mesh of 32×32 elements. The
problem with Ra = 103 is solved as a steady state problem, while for Ra = 105 a transient
analysis is performed with a total time of 0.3 and setting ∆t equal to 0.01 and γ = 0.5.
Figures 4.18 and 4.19 show the numerical results obtained, in terms of temperature field
and streamlines. Once again, a very good agreement is obtained between the present
results and those reported in Basak et al. (2006).

4.12 Concluding remarks

In the present chapter a finite element formulation of the non-isothermal fluid dynamics
problem is presented. In this formulation, the fluid is considered viscous, incompressible
and Newtonian. In addition, a laminar flow is assumed. The Boussinesq approximation
is introduced to represent artificially the variation of the density due to the temperature
gradient. The Taylor–Hood elements (Q2Q1 and P2P1) are implemented to ensure that
the LBB condition is satisfied. The code developed allows performing steady state and
transient analyses following different time schemes. Several benchmark problems are solved
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(a) Temperature field. (b) Streamlines.

(c) Temperature field (Basak et al., 2006). (d) Streamlines (Basak et al., 2006).

Figure 4.18: Graphical results of the uniform heated bottom wall problem, Ra = 103.

(a) Temperature field. (b) Streamlines.

(c) Temperature field (Basak et al., 2006). (d) Streamlines (Basak et al., 2006).

Figure 4.19: Graphical results of the uniform heated bottom wall problem, Ra = 105.
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using the in-house code in order to verify the numerical results obtained and to illustrate
some important concepts regarding the fluid dynamics theory.

The example presented in section 4.11.7 illustrates that the natural convection in the
fluid has an important influence on the temperature distribution, especially on the top
wall of the cavity. In fact, when a fluid is heated from below, the warmer fluid rises
(in the centre), while the colder descends (around the edges) due to the differences in
density at different temperatures. These movements originate the Bénard cells, which are
expected to develop in the cavity of the GFRP square tubular cross-section. Furthermore,
due to the ascending movement of the warm air, the upper flange of the cross section is
also heated due to the natural convection of the fluid. This phenomenon is assessed and
discussed in detail in chapter 7.



Chapter 5

Conjugate heat transfer problem

5.1 Introduction

The term conjugate heat transfer is used to describe processes that involve temperature
variations within solids and fluids due to their thermal interaction.

Traditionally, the conjugate heat transfer problems were solved using the classical
convective heat transfer modelling through the heat transfer coefficient (Dorfman and
Renner, 2009), and it was only since the 1960s, that the conjugate and coupled formulation
began to be used.

Luikov et al. (1971) were one of the first researchers to point out the need to take into
account wall conduction in problems where convective heat transfer occurs on the surfaces
of a conducting solid wall of finite thickness. Since then, numerous studies about the cou-
pling of solid wall conduction with fluid convection have been reported in the literature.
In recent years, the conjugate heat transfer, especially in cavities, has gained the attention
of many scientists due to its application, as for example, in thermal design of buildings,
furnace design or solar collectors. Furthermore, the present needs and demands of engi-
neering applications dictate extremely strict requirements for thermally loaded surfaces
and, hence, a deep knowledge of the conjugate heat transfer process. In order to accom-
plish this goal, researchers have performed experimental studies about the effect of the
conduction on natural convection, as well as numerical investigations to develop effective
numerical tools for solving conjugate convective-conductive heat transfer problems (Zudin,
2011).

Regarding the thermal simulation of cavities, namely the consideration of both the
natural convection in a fluid and the conductivity on the walls, the literature available is
relatively extensive. One of the most referred studies is the one carried out by Kamin-
ski and Prakash (1986). It analyzes the natural convection in a square enclosure with
three zero thickness walls and one finite thickness right vertical wall, for different Grashof
numbers. A temperature gradient is created by prescribing different temperatures in both
vertical faces and the resulting conjugate heat transfer problem is solved taking into ac-
count the conduction in the right vertical wall. Multiple variations of this paper can be
found in the literature, as for example, Belazizia et al. (2012), where different Rayleigh
numbers and thermal conductivities of the wall are considered, or Du and Bilgen (1972),
where different parameters — Rayleigh numbers, wall thickness, conductivity of the wall
and dimensions of the enclosure — are tested in order to determine the influence of the
conduction in the solid wall and convection in the fluid during the heat transfer process.
Mobedi (2008) presented a numerical study about the heat transfer in cavities where the

103
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Figure 5.1: Boundary conditions of the coupled problem.

two lateral walls have null thickness and the horizontal walls have finite thickness. A gra-
dient of temperature is applied between the two vertical walls and the steady state results
are obtained for a wide range of Rayleigh numbers and thermal conductivity ratios (ratios
between the wall and fluid conductivities).

While the natural convection heat transfer in cavities and its interaction with the
conductivity on the walls has been widely explored, in only a few studies the thermal radi-
ation is considered together with heat convection. However, as Yücel et al. (1989) refers,
radiation can strongly influence the natural convective flow. One of the first numerical
studies about conjugate heat transfer with radiative heat flux was presented by Kim and
Viskanta (1984), where a two-dimensional rectangular cavity with four finite thickness
walls is analysed. A gradient of temperatures is imposed between the exterior faces of the
vertical walls, while the exterior faces of the internal walls are insulated. The fluid inside
the cavity is considered to be nonparticipating, and only radiation heat exchange between
the walls, that are assumed to be gray diffuse emitters, is considered. Recently, Nouanegue
et al. (2009) presented a numerical study where the influence of the radiative heat exchange
in the problem solved by Kaminski and Prakash (1986) is studied.

The current chapter presents a compact coupled procedure for modelling transient
conjugate heat transfer problems using the FEM. The resulting system of equations is
obtained by coupling the fluid dynamics equations (presented in chapter 4) with the heat
transfer equations (described in chapter 3). Furthermore, boundary conditions in the fluid-
solid interface have to be defined. The code developed is verified by solving the following
two problems:

• Conjugate heat transfer in a square cavity with a finite thickness wall.

• Conjugate heat transfer problem of a differentially heated cavity where the finite
thickness walls are gray-diffusive.
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5.2 Governing equations and strong form of the problem

Consider the coupled conjugate heat transfer problem schematically represented in
figure 5.1, where Ωs and Ωf are the solid and fluid domains, respectively. The interface
between the solid and fluid domains is represented by ΓI , when no radiative heat exchange
is present, and ΓR, when there is radiative heat exchange between the walls of the cavity.
Along the present chapter, the subindex s, f and I are used to refer the solid, fluid and
interface variables.

The classical formulation of the strong form of the conjugate heat transfer problem
reads as follows:

Obtain θ ∈ Ωs, R ∈ ΓR and {v, p, θ} ∈ Ωf for x = xi ei ∈
(
Ωs ∪ Ωf

)
and at all

t ∈ [t0, t1], such that:

ρ cp θ̇ + div q −G = 0 in Ωs (5.1a)
div v = 0 in Ωf (5.1b)
v̇ + (∇v)v − ν∇2v + ∇p = b+ fB in Ωf (5.1c)

ρ0 cp
(
θ̇ + v ·∇θ

)
+ div q −G = 0 in Ωf (5.1d)

θ − θ = 0 on Γθs (5.1e)
qn + q = 0 on Γqs (5.1f)
qn + h (θa − θ) = 0 on Γh (5.1g)

qn + ε σ
(
θ4
a − θ4

)
= 0 on Γr (5.1h)

v − v = 0 on Γv (5.1i)
t− t = 0 on Γt (5.1j)
θ − θ = 0 on Γθf (5.1k)
qn + q = 0 on Γqf (5.1l)
v = o on ΓI and ΓR (5.1m)
θ|f = θ|s on ΓI and ΓR (5.1n)
qn|s + qn|f = 0 on ΓI (5.1o)

qn|s + qn|f −
ε

1− ε
(
σ θ4 −R

)
= 0 on ΓR (5.1p)

θ0 = θ0 at t = t0 in Ωs (5.1q)
v0 = v0 at t = t0 in Ωf (5.1r)
θ0 = θ0 at t = t0 in Ωf (5.1s)

No-slip boundary conditions (the velocity in the interface is null) and ideal thermal
contact (continuous temperature field) are considered in the interface (equations (5.1m)
and (5.1n), respectively). Equation (5.1p) imposes equilibrium of fluxes when the radiative
heat flux between the faces of a solid is calculates assuming nonparticipating medium, i.e.,
neglecting the contribution of the fluid in the radiative heat exchange.
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5.3 Finite element formulation

5.3.1 Weak form

The compact weak form of the conjugate problem is formed by the set of the weak
forms presented in chapters 3 and 4 and can be written as:

∫
Ωs

(
∇δθ · q − δθ ρ cp θ̇

)
dΩs +

∫
Ωs
δθ G dΩs +

∫
Γqs

δθ q dΓqs +
∫

Γh
δθ h (θa − θ) dΓh+

+
∫

Γr
δθ ε σ

(
θ4
a − θ4

)
dΓr +

∫
ΓR
δθ

ε

1− ε
(
σ θ4 −R

)
dΓR+

+
∫

Ωf

(
∇δθ · q − δθ ρ0 cp θ̇

)
dΩf −

∫
Ωf
δθ ρ0 cp v ·∇θ dΩf+

+
∫

Ωf
δθ G dΩf +

∫
Γqf

δθ q dΓqf = 0 (5.2)

∫
ΓeR
δRe

Re

(1− εe) dΓeR =
∫

ΓeR
δRe σ

εe

(1− εe) (θeI)4 dΓeR+

+
n∑
k=1
k 6=e

∫
ΓeR

∫
ΓkR
δReRk

cosβe cosβk
2 r dΓkR dΓeR (5.3)

∫
Ω
δv · v̇ dΩ +

∫
Ω
δv · (∇v)v dΩ +

∫
Ω

∇δv : ν∇v dΩ−

−
∫

Ω
div δv pdΩ−

∫
Γt
δv · tdΓt −

∫
Ω
δv · b dΩ−

∫
Ω
δv · fB dΩ = 0

(4.29a)

−
∫

Ω
δpdiv v dΩ = 0 (4.29b)

5.3.2 Spatial discretization, residual vector and tangent matrix

Consider that the independent variables v(e), p(e), θ(e) and R(e) in each element can,
in general, be approximated by the expressions,

v(e) = ψ(e)
v v(e) in Ω(e)

f (5.5a)

p(e) = ψ(e)
p p(e) in Ω(e)

f (5.5b)

θ(e) = ψ(e)
θs
θs

(e) +ψ(e)
θI
θI

(e) in Ω(e)
s (5.5c)

θ(e) = ψ(e)
θf
θf

(e) +ψ(e)
θI
θI

(e) in Ω(e)
f (5.5d)

R(e) = ψ(e)
R R(e) on Γ(e)

R (5.5e)

where θ(e)
s , θI (e) and θf (e) are the nodal temperatures at the solid, the interface (ΓI or

ΓR) and the fluid.
In particular, if the element does not have nodes along the interface, then the expres-

sions (5.5c) and (5.5d) render:

θ(e) = ψ(e)
θs
θs

(e) in Ω(e)
s (5.6a)

θ(e) = ψ(e)
θf
θf

(e) in Ω(e)
f (5.6b)
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As the trace of the shape functions ψ(e)
θs

and ψ(e)
θf

along the interface is zero, then the
approximation along the interface is given by:

θ(e) = ψ(e)
θI
θI

(e) on Γ(e)
I (5.7)

The elemental residual vector is calculated by replacing the expressions (5.5), their
variations, (3.32) and (4.34) into the weak form presented in section 5.3.1.

The elemental residual vector at a generic computation time, (t+∆t), can be expressed
as:

r(e)t+∆t =



r(e)
v

r(e)
p

r(e)
θf

r(e)
θI

r(e)
θs

r(e)
R



t+∆t

(5.8)

Using the matrix notation, the elemental residual vector is given by (5.12). This vector
is valid for all the elements. The first three lines refer to elements in the fluid domain, the
forth line refers to the nodes in the interface, the fifth line refers to elements in the solid
domain and the remaining lines refer to the radiosity elements. The matrices regarding
the solid domain can be consulted in section 3.6, while the matrices regarding the fluid
domain are defined in section 4.6. Due to the coupling of the solid and fluid domain, new
matrices/vectors referring to the interface have to be defined,

K(e)
ff = K(e) + L(e) + 1

γ∆t M(e) (5.9a)

K(e)
fI =

∫
Ω(e)
f

B(e)T
θf

D B(e)
θI

dΩ(e)
f (5.9b)

K(e)
II =

∫
Ω(e)
f

B(e)T
θI

D B(e)
θI

dΩ(e)
f +

∫
Ω(e)
s

B(e)T
θI

D B(e)
θI

dΩ(e)
s (5.9c)

K(e)
Is =

∫
Ω(e)
s

B(e)T
θI

D B(e)
θs

dΩ(e)
s (5.9d)

K(e)
ss = K(e)

s + 1
γ∆t M(e)

s (5.9e)

f(e)
θI

=
∫

Ω(e)
f

ψ
(e)T
θI
ψ

(e)
θf

g(e) dΩ(e)
f +

∫
Ω(e)
s

ψ
(e)T
θI
ψ

(e)
θs

g(e) dΩ(e)
s −

−
∫

Γ(e)
R

ψ
(e)T
θI

ε

1− ε

(
σ
(
ψ

(e)
θI
θ

(e)
I

)4
−ψ(e)

R R(e)
)

dΓ(e)
R

(5.9f)

where, B(e)
θs

, B(e)
θI

and B(e)
θf

are the matrix that gather the derivatives of the shapes functions
in the solid, interface and fluid:

B(e)
θs

= ∇ψ
(e)
θs

(5.10a)

B(e)
θI

= ∇ψ
(e)
θI

(5.10b)

B(e)
θf

= ∇ψ
(e)
θf

(5.10c)
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The resultant nonlinear system of equations is obtained by assembling the elemental
ones and solved using the iterative/incremental Newton–Raphson method.

The elemental tangent matrix at the instant (t + ∆t) is given by (5.13), where the
sub-matrices are defined in expressions (3.53), (4.61), (4.40) and (4.48). The matrices due
to the coupling of the solid and fluid domain are also included.

5.3.3 Adaptive time stepping

Adaptive time stepping schemes can be used to solve several types of transient nonlinear
problems. The formulation presented in the current and previous chapters is given for a
constant time step, but it is possible to extend it to variable time step size.

In the code developed, a simple automatic time stepping scheme is implemented to
obtain a converged solution when equilibrium iterations fail because the time step used is
too large. In this scheme, when convergence is reached with a certain time increment, ∆t,
the next time increment, ∆t∗, is given by (adapted from Tiago, 2007),

∆t∗ = ∆t
√
n

ni
(5.11)

where n is the desired number of iterations and ni was the required number of iterations
to archive a converged solution on the last step. In the code developed, n was set equal
to 6.

When convergence is not reached after a prescribed maximum number of iterations
with ∆t, the program automatically calculates the new time increment as ∆t∗ = ∆t/2.
In the code developed, the maximum number of allowed iterations is 20. The solution of
the problem is computed at the updated time step. If the convergence is not attained,
a new subdivision of the time increment is done. This process continues until the maxi-
mum number of subdivisions (10, in the code developed) is attained without reaching a
converged solution. More efficient and complex algorithms can be found in Turek (1998).

5.4 Verification examples

5.4.1 Introduction

In the present section two typical benchmark problems are tested to verify the code
developed.

Section 5.4.2 presents a two-dimensional conjugate problem consisting of a natural
convection flow taking into account the conduction of the solid elements. The numerical
solution obtained is compared with those available in the literature.

Section 5.4.3 reports a conjugate problem where a square cavity is differentially heated.
Two finite thickness horizontal walls close the square cavity. The effect of the exchange of
radiative heat flux between the mentioned walls in the natural convection is analysed. In
this case, the numerical results are compared with those obtained using the commercial
software ADINA-F (2010).

5.4.2 Wall conductivity conjugate problem

A benchmark test consisting of a cavity with a finite thickness wall of 0.2 m in the
right side is considered. The configuration of the problem is depicted in figure 5.2a. The
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F
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Figure 5.2: Cavity-wall problem.

top and bottom walls of the cavity are insulated, while the left wall and the exterior face
of the right wall are isothermal.

The problem is solved using a nonuniform mesh of 20× 20 and 20× 5 Q2Q1 elements
in the cavity and on the wall, respectively (figure 5.2b). The Prandtl number is set as
Pr = 0.7 (the kinematic viscosity is equal to 0.7 m2/s and the thermal conductivity, the
density and the specific heat capacity in the fluid are set as unity). The vertical component
of the gravity acceleration is considered equal to (−10) m/s2.

Three nonlinear finite element semi-implicit transient analyses are carried out until
attaining the steady state solution. The total time is set as 200 seconds and the time
step is 10 seconds. The initial temperature and velocity are set as zero, as well as their
derivatives with respect to time.

The analyses performed are function of the Rayleigh number, Ra, and of the ratio
between the thermal conductivities of the wall and of the fluid (kr = kw/kf ):

• In order to compare the numerical results with those reported in Kaminski and
Prakash (1986) and Belazizia et al. (2012), a first simulation was carried out with
Ra = 7 · 104 (the thermal expansion coefficient is equal to 4900) and kr = ∞, i.e.,
with the conductivity of the wall being much higher than that of the fluid. The
thermal conductivity of the wall is set as 108, while the specific heat capacity and
the density of the solid are equal to 1.

• To evaluate if the code developed is capable of simulating the effect of the wall con-
ductivity in the natural convection, a value of Ra = 105 (the thermal expansion
coefficient is equal to 7000) was set and two analyses were carried out with kr = 0.1
(the thermal conductivity of the wall is set as 0.1) and kr = 1 (the thermal conduc-
tivity of the solid is equal to 1). The specific heat capacity and the density of the
solid are, once more, equal to 1. The results were compared with those presented
by Belazizia et al. (2012).

Figure 5.3 shows the temperature field and the streamlines obtained when Ra = 7 ·104

and kr = ∞. Once more, a good agreement is observed when results are compared with
those of Kaminski and Prakash (1986).
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(a) Temperature field. (b) Streamlines.

(c) Temperature field (Kaminski and Prakash,
1986).

(d) Streamlines (Kaminski and Prakash, 1986).

Figure 5.3: Graphical results of the problem when Ra = 7 · 104 and kr =∞.

It can be observed that kr =∞ implies that kw is much higher than kf and, thus, this
case provides the same results of the cavity without wall and a right side with prescribed
temperature (this example was also analysed in section 4.11.6 setting different prescribed
temperatures in the vertical walls).

Figures 5.4 and 5.5 depict the numerical results obtained in terms of temperature and
streamlines when Ra = 105 and the relative conductivity equal to kr = 0.1 and kr = 1.
Good agreement between the presented results and the corresponding numerical results
reported in the literature can be observed.

The results depicted in figures 5.4 and 5.5 illustrate the effect of the wall conductivity in
the natural convection. It can be observed that for the same Rayleigh number (Ra = 105),
the temperatures in the fluid are lower for reduced values of kr. In fact, a reduced kr implies
reduced thermal conductivity of the solid and, in this case, the wall acts as an insulation.
Consequently, the temperature difference between the interior face of the wall and the cold
boundary (left side of the cavity) is lower.

5.4.3 Effect of the radiation on a conjugate problem

A square cavity with two finite thickness walls in the horizontal faces is considered.
The length of the cavity is 1 m and the thickness of the walls is set as 0.1 m. The vertical
walls of the cavity are maintained at constant temperature equal to −0.5 ◦C on the right
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(a) Temperature field. (b) Streamlines.
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Figure 5.4: Graphical results of the problem when Ra = 105 and kr = 0.1.
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Figure 5.5: Graphical results of the problem when Ra = 105 and kr = 1.0.
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Figure 5.6: Square cavity with finite thickness horizontal walls.

face and 0.5 ◦C on the left face. Figure 5.6a illustrates the geometry of the problem and
the boundary conditions. The enclosure is fullfilled by air (Pr = 0.71) and the laminar
heat transfer is computed for Ra = 106 and Ra = 107. The vertical component of the
gravity is set as (−10) m/s2. In all the cases studied, the density, the heat specific capacity
and the thermal conductivity of the fluid are set as unity, the kinematic viscosity is equal
to 0.71 m2/s and the density and the specific heat capacity of the solid are both set as
unity.

Regarding the walls, different boundary conditions are considered, namely the follow-
ing:

• In order to compare the effect of the wall conduction in the natural convection,
different relative thermal conductivities, kr, are adopted. The dimensionless kr value
is computed as the ratio between the thermal conductivity of the wall and that of
the fluid (kr = kw/kf ) and, in the present example, two values are considered:
(i) kr = 0.0 (thermal conductivity of the solid equal to 10−6) and (ii) kr = 1.0
(thermal conductivity of the solid equal to 1). In both cases, the external faces
of the horizontal walls are insulated. The Rayleigh number is fixed to Ra = 106

(thermal expansion coefficient equal to 71000).

• To evaluate the effect of the Rayleigh number in the natural convection, a problem
with Ra = 107 (thermal expansion coefficient equal to 710000) and kr = 0.0 (thermal
conductivity of the solid equal to 10−6) is also computed. The external faces of the
horizontal walls are insulated.

• To assess the influence of the radiative heat flux in the natural convection, a problem
where the walls are considered gray and diffusive and, consequently, emit heat radi-
ation is considered. The external faces of the wall are modelled as adiabatic and the
thermal conductivity of the wall is set large enough to obtain one dimensional heat
transfer on the walls (kr = ∞, the thermal conductivity of the walls is set as 106).
The same example is computed without considering the radiative heat exchange and,
in both cases, the Rayleigh number of the problems is set as Ra = 106 (thermal ex-
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Ra kr No radiation Radiation

106
0.0 0.1 —
1.0 0.01 —
∞ 0.001 0.001

107 0.0 0.001 —
Table 5.1: Time steps used in each analysis.

pansion coefficient equal to 71000) and, when radiative heat flux exists, the emissivity
is equal to 0.5 and the Stefan–Boltzmann’s constant is σ = 5.669 ·10−8 W/(m2 K4).

Furthermore, in all the examples, the no-slip condition is prescribed (null velocity) in all
the cavity walls.

A non-uniform mesh with 40 × 40 Q2Q1 elements is used to discretizate the fluid
area, while a mesh of 5 × 40 mesh with Q2Q1 elements is used at each wall. This mesh
refinement is based on the meshes used in the reference papers and is considered sufficient
to model accurately the heat transfer and to obtain numerical results where the spatial
discretization error can be neglected. Figure 5.6b illustrates the mesh employed.

Nonlinear transient analyses are carried out using the Euler backward scheme until the
steady state regime is reached. The initial temperature and velocity are set as zero, as well
as their derivatives with respect to time. The time steps used depend on the problem and
are reported in table 5.1. It is possible to conclude that shorter time steps are required
when more complex problems are analysed.

Figure 5.7 illustrates the isotherms for kr = 0.0 and kr = 1.0 when Ra = 106. It can be
observed that when kr = 1.0 the temperature distribution on the walls is two-dimensional,
and since there is heat transfer between the wall and the fluid, the temperatures in the
fluid are lower compared to the case in which kr = 0.0.

In order to solve the problem with Ra = 106 and kr = 1.0 using a constant time
step of 0.01 s until a final time of 5 s, a total of 500 computational steps are required.
This calculation is extremely time consuming and also requires huge memory capacities
as the results have to be stored for all the computational times and all the degrees of
freedom. In order to reduce the CPU time, this problem was also solved using the adaptive
time stepping algorithm presented in section 5.3.3. Figure 5.8 shows the evolution of the
adimensional norm of the residual vector for the first ten time steps. It can be observed that
no convergence is attained for the two first time steps, while for the remaining convergence
is obtained. Table 5.2 summarizes the time steps employed in the first ten calculations.
The desired number of iterations is set as 5 and the solution of the problem at 5 s is
calculated in 32 steps, instead of the previous 500.

Figure 5.9 shows the steady state solution of the natural convection problem when
Ra = 107. Comparing figures 5.7a and 5.9a, it can be observed that high Rayleigh
numbers lead to more uniform temperatures in the cavity by maintaining the temperature
of the upper and lower walls almost constant.

The comparison of the previous results with the reference solutions attests the good
accuracy of the code developed in this thesis.

Figure 5.10 depicts the temperature contour in the fluid cavity when there is no radia-
tive heat flux (figure 5.10a) and when radiation is involved (figure 5.10b). In both figures
the isotherms on the walls are linear and, consequently, the heat transfer can be considered
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(a) kr = 0.0 (b) kr = 1.0

(c) kr = 0.0 (Mobedi, 2008). (d) kr = 1.0 (Mobedi, 2008).

Figure 5.7: Temperature fields computed when Ra = 106.
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Figure 5.8: Convergence at the first ten time steps when Ra = 106 and kr = 1.0.
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Time step ∆t
1 0.02500 no convergence is attained
2 0.01250 no convergence is attained
3 0.00625
4 0.00494
5 0.00494
6 0.00494
7 0.00494
8 0.00552
9 0.00618
10 0.00691

Table 5.2: Time steps used in the first ten time steps when Ra = 106 and kr = 1.0.

(a) kr = 0.0 (b) kr = 0.0 (Le Quéré, 1991).

Figure 5.9: Isotherms when Ra = 107.

as one-dimensional. This result is contrary to that observed in figure 5.7b where the heat
conduction on the walls is two-dimensional. Similar conclusions are reported in Mobedi
(2008). Moreover, it can be observed that the radiative heat flux between the walls causes
a reduction of the temperature distribution along the vicinity of the upper and lower walls.

Figure 5.11 illustrates the vertical and horizontal components of the velocity vector and
the temperature along the vertical line x1 = 0.5 m. The numerical results are compared
with those obtained using the commercial software ADINA-F (2010) and again a good
agreement can be noticed. In figure 5.11c it can be observed once more that the radiation
causes a reduction of the temperatures in the fluid.

5.5 Concluding remarks

A compact FE formulation developed in order to solve conjugate problems with pres-
ence of heat transfer exchange between faces is presented. An adaptive time stepping
scheme is also introduced.
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(a) ε = 0.0 (b) ε = 0.5

Figure 5.10: Temperature fields computed when kr =∞ and Ra = 106.
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Figure 5.11: Velocity and temperature distribution along the line x1 = 0.5 m.
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The code developed is used to solve, firstly, a benchmark problem consisting of the
heat transfer in an air-filled square cavity with thick and conductive vertical walls and,
secondly, a problem where there is radiative heat exchange between the cavity walls. A
study about the influence of the radiative heat flux in the natural convection is presented,
allowing to conclude that the radiative heat exchange between the faces of a solid influences
the temperature distribution in the solid and the fluid. In both examples, non-uniform
meshes more refined in the vicinity of the walls (interface between the solid and the fluid)
are employed in order to reproduce accurately the velocity field (high velocity gradient in
the vicinity of the wall).

In both cases, the developed code is capable of reproducing accurate solutions, attested
by the good agreement with the results reported in the literature or obtained by using the
commercial FE software ADINA-F (2010).





Chapter 6

Thermomechanical finite element
model

6.1 Introduction

A beam is a one-dimensional continuum used to represent three-dimensional bodies
with one dimension significantly larger than the other two. The classical beam theories
(Euler–Bernoulli theory or Timoshenko theory) have application in several engineering
areas, as for example, civil, mechanical and aero-space engineering. Currently, the com-
plexity of some of the mechanical phenomena to simulate makes it necessary to develop
exact and nonlinear beam theories that allow to compute the displacements, strains and
stresses with more precision. The interested reader can consult the evolution of the beam
theories in Timoshenko (1953).

The derivation of a beam theory was traditionally based on some simplifying static and
kinematic hypotheses. While the former introduces constraints on the stress distribution,
the latter imposes artificial constraints on the continuum motion of the model and, thus,
into the deformation process.

Originally, Reissner (1972) proposed a geometrically exact beam theory in the two-
dimensional space. The scientific community recovered the interest in this work due to
its posterior generalization made, again, by Reissner (1981), where a three-dimensional
model capable of dealing with arbitrary large displacements and deformations and mod-
erate rotations was presented. However, this model was only approximate, based on a
simplification of the rotation matrix (which is nontrivial in the three-dimensional space
due to the non commutative character of the rotations).

The work of Simo (1985) presented the first compact 3D geometrically exact beam
theory based on the rotation tensor. Subsequently, Simo and Vu-Quoc (1986) presented
the weak form of the governing equations of the problem in the context of the finite element
formulation.

In the current chapter, a geometrically exact beam theory using the Reissner–Simo
kinematic assumptions is presented. The advantage of the geometrically exact beam the-
ories, with respect to other nonlinear theories, is that all the geometrical effects are taken
into account and, therefore, no restrictions on the magnitude of the displacements and ro-
tations are imposed a priori. However, a kinematical hypothesis is introduced: the plane
sections remain plane after the deformation, which is inherited from the Timoshenko beam
theory.

121



122 Thermomechanical finite element model
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Figure 6.1: Reference and deformed configuration of a straight rod.

In the present chapter a plane formulation of this theory is exposed following the
works of Zienkiewicz and Taylor (2005, chapter 17, page 517), Wriggers (2008, chapter
9, page 325) and Tiago (2007, chapter 6, from page 169 to 210). Section 6.2 reports
the geometrically exact beam theory, including the weak form of the problem and its
perturbation. Section 6.3 presents the finite element formulation where the elemental and
global residual vector and tangent matrix are obtained. Finally, section 6.4 illustrates a
set of applications of the code developed.

6.2 Geometrically exact beam theory formulation

6.2.1 The rod model

Consider a rod where the reference or undeformed configuration is defined in the or-
thonormal base vectors coordinate system, denoted by the superscript r, i.e., eri .

Attending to figure 6.1, the position of any point of the cross section can be defined
as,

ξ = ζ + ar (6.1)

and

ζ = ζ er1 (6.2a)
ar = ξ er2 (6.2b)

where ζ describes the position of the points situated in the axis bar, ζ is the arc-length
parameter, ar represents the relative position with respect to the axis of a point located
in an arbitrary cross section and ξ is the perpendicular distance between the point and
the bar axis.
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6.2.2 Kinematics

Displacement field

The deformed position is defined in the coordinate system denoted as ei, where the
vector e1, in general, is not tangent to the beam axis on the deformed configuration and
e2 fits with the cross section position. The position of any point laid on the rod axis is
given by,

z = ζ + u (6.3)
where u = u (ζ) is the displacement vector of the points lying on the beam axis. The
position of any point of the cross section after the deformation, x = x (ξ), can be expressed
as,

x = z + a (6.4)
where a describes the position of the points of the cross section given by:

a = ξ e2 (6.5)

Hence, replacing (6.3) in (6.4), one obtains:

x = ζ + u+ a (6.6)

The assumed kinematical hypothesis is that the sections remain plane after the defor-
mation, i.e., after the application of the loading and imposed displacements. Thus, the
vector a can be expressed by,

a = Qar (6.7)
where Q = Q (θ) is the rotation tensor, which can be calculated as follows:

[Q] =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (6.8)

Replacing (6.2b) into (6.7) and using the resulting expression in (6.6), it is obtained,

x = ζ + u+ ξQer2 (6.9)

whose matrix form is: 
x1
x2
x3

 =


ζ
0
0

+


u1
u2
0

+ ξ


− sin θ
cos θ

0

 (6.10)

The generalized displacement field of a point laid in the axis bar is defined by,

d =


u1
u2
θ

 (6.11)

where u1 and u2 are the displacements in the direction of the vectors er1 and er2, re-
spectively, and θ is the rotation of the cross section.

The displacement field at a generic point can be calculated as the difference between
the deformed position and the initial or undeformed position:

δ = x− ξ (6.12)
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Deformation gradient

The deformation gradient is given by:

F = ∂x

∂ξ
= ∂xi
∂ξj

eri ⊗ erj = ∂x

∂ξi
⊗ eri = ∂x

∂ζ
⊗ er1 + ∂x

∂ξ
⊗ er2 (6.13)

The term concerning the variation of the cross section can be written as,
∂x

∂ξ
= ∂

∂ξ
(ζ + u+ a) = ∂a

∂ξ
= ∂

∂ξ
(ξ e2) = e2 (6.14)

and the term associated to the variation along the axis can be expressed as,
∂x

∂ζ
= ∂

∂ζ
(ζ + u+ a) = er1 + u′ + ∂

∂ζ
(Qar) = er1 + u′︸ ︷︷ ︸

z′

+Q′QT︸ ︷︷ ︸
K

a (6.15)

where the notation for derivatives (·)′ = ∂(·)/∂ζ was employed and the tensor K was
introduced:

K = Q′QT =

0 −1 0
1 0 0
0 0 0

 θ′ (6.16)

The curvature can be computed as,

κ = axial (K) = θ′ er3 (6.17)

where κ is the vector associated with the skew-symmetric1 tensor K.
Hence, the gradient of the transformation can be written as,

F =
(
er1 + u′ + κ× a

)
⊗ er1 + e2 ⊗ er2 =

= Qer2 ⊗ er2 +
(
z′ − e1 + e1 + κ× a

)
⊗ er1 =

= Q (er1 ⊗ er1 + er2 ⊗ er2) +

z′ − e1︸ ︷︷ ︸
η

+κ× a

⊗ er1 =

= Q (erα ⊗ erα) +

η + κ× a︸ ︷︷ ︸
γ

⊗ er1 (6.19)

where η is the deformation vector in the e1 and e2 directions (axial deformation of the
beam axis and the average angular distortion of the cross section), and γ is the total
deformation vector (axial strain and angular distortion).

The deformation gradient in the reference position can be computed as follows,

F r = QT F = QTQ (erα ⊗ erα) +

QTη︸ ︷︷ ︸
ηr

+
(
QTκ

)
︸ ︷︷ ︸

κr

×
(
QTa

)
︸ ︷︷ ︸

ar


︸ ︷︷ ︸

γr

⊗ er1 (6.20)

1Consider a general vector t. Hence, t = axial (T ), where:

[T ] =

[ 0 −t3 t2
t3 0 −t1
−t2 t1 0

]
(6.18)
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or, in its matrix form:

[F r] =

1 0 0
0 1 0
0 0 0

+

cos θ + cos θ u′1 + sin θ u′2 − 1 0 0
− sin θ − sin θ u′1 + cos θ u′2 0 0

0 0 0

+ ξ θ′

−1 0 0
0 0 0
0 0 0

 (6.21)

Then, using the previous expression, the generalized deformations can be computed
as,

εr =


ε
γ
κ


r

=


u′2 sin θ + (1 + u′1) cos θ − 1
u′2 cos θ − (1 + u′1) sin θ

θ′

 (6.22)

where ε, γ and κ are, respectively, the axial deformation, the angular distortion and the
curvature of the points laid in the bar axis.

The axial deformation, ε, and the angular distortion, γ̃, at any point of the cross section
can be computed as:

ε = ε− ξκ (6.23a)
γ̃ = γ (6.23b)

As the angular distortion is constant in all points of the cross section and equal to γ, in
the following formulation no distinction between γ̃ and γ will be done, in order to simplify
the notation.

6.2.3 Statics

Generalized stresses and constitutive relation

The first Piola-Kirchhoff stress tensor, P , is written as,

P = τ i ⊗ eri (6.24)

where τ i is the stress tensor acting in the plane whose perpendicular direction is defined
by eri on the reference configuration. The tensor P can be decomposed as a sum of the
term regarding the beam axis and those concerning the cross section:

P = τ 1 ⊗ er1 + τ 2 ⊗ er2 + τ 3 ⊗ er3︸ ︷︷ ︸
=o

(6.25)

The stress resultants in the cross section can be computed as follows:

n =
∫
Ar
τ 1 dAr (6.26a)

m =
∫
Ar
a× τ 1 dAr (6.26b)

The back-rotated first Piola-Kirchhoff stress tensor is obtained as:

P r = QTP (6.27)

Hence, the generalized cross section resultants are:

nr =
∫
Ar
τ r1 dAr =

∫
Ar
σ dArer1 +

∫
Ar
τ dArer2 (6.28a)

mr =
∫
Ar
ar × τ r1 dAr = −

∫
Ar
ξσ dArer3 (6.28b)
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The back-rotated cross sectional generalized stress resultants, σr, are energetically
conjugated with the cross sectional generalized strains, εr, and can be written as,

σr =


N
V
M


r

=


∫
Ar σ dAr∫
Ar τ dAr

−
∫
Ar ξσ dAr

 (6.29)

where N , V and M are the internal axial force, shear force and moment, respectively,
acting in the reference configuration.

The general constitutive relations for the material, which could be nonlinear, can be
written as:

σ = σ
(
ε− ε∆θ

)
(6.30a)

τ = τ (γ) (6.30b)

where ε∆θ is the axial deformation due to the temperature gradient2, ∆θ.

6.2.4 Variational formulation of the problem

Using the results reported in Tiago (2007), the internal virtual work may be written
as:

δWint =
∫

Ω
P : δF dΩ =

∫ `r

0

∫
Ar
P : δF dAr dξ =

∫ `r

0
σr · δεr dζ (6.31)

The variation of the cross sectional generalized strains renders,

δεr =


δε
δγ
δχ

 =


− sin θ δθ + cos θ δu′1 − u′1 sin θ δθ + u′2 cos θ δθ + sin θ δu′2
− cos θ δθ − sin θ δu′1 − u′1 cos θ δθ − u′2 sin θ δθ + cos θ δu′2

δθ′

 (6.32)

or, using matricial notation,
δεr = Ψ ∆ δd (6.33)

where

Ψ =

 cos θ sin θ 0 − (1 + u′1) sin θ + u′2 cos θ
− sin θ cos θ 0 − (1 + u′1) cos θ − u′2 sin θ

0 0 1 0

 (6.34a)

∆ =


∂
∂ζ 0 0
0 ∂

∂ζ 0
0 0 ∂

∂ζ

0 0 1

 (6.34b)

δd =


δu1
δu2
δθ

 (6.34c)

Hence, replacing (6.33) into (6.31), one obtains,

δWint =
∫ `r

0
σr · δεr dζ =

∫ `r

0
(∆ δd)T ΨTσr dζ (6.35)

2There is a notation conflict, as ∆θ is used to represent the temperature variation and, also, the
incremental rotation. The correct meaning of this variable should be interpreted from the context.
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where σr = σr (εr).
The external virtual work is,

δWext =
∫ `r

0
δdT (λf) dζ (6.36)

where λ is a load parameter and f is the load vector whose components are the prescribed
distributed loads along the er1 direction, the er2 direction and the distributed moment:

f =


p1
p2
m

 (6.37)

The weak form of the equilibrium of the rod is calculated using the virtual work
principle,

δW ≡ δWint − δWext = 0 ∀δd (6.38)

where δd is the variation of the generalized displacements field.

Equilibrium equations in the domain

The governing equation can be derived from the weak form (6.38), which can be
expressed as: ∫ `r

0
(nr · δηr +mr · δκr) dζ −

∫ `r

0
(λf) · δddζ = 0 (6.39)

Rewriting the expression (6.32) as,

δηr = QT δu′ +


− (1 + u′1) sin θ + u′2 cos θ
− (1 + u′1) cos θ − u′2 sin θ

0

 δθ (6.40a)

δκr = δθ′er3 (6.40b)

replacing the result into (6.39) and integrating by parts on δu′ and δθ′, the equilibrium
equations in the domain are given by,

n′ + λn = o ∀δu (6.41a)
m′ + z′ × n+ λm = o ∀δθ (6.41b)

where, for the plane case:

n = N e1 + V e2 = N Qer1 + V Qer2 (6.42a)
n′ = ∂(n)/∂ζ (6.42b)
n = λ p1 e

r
1 + λ p2 e

r
2 (6.42c)

m = M e3 = M Qer3 (6.42d)
m′ = ∂(m)/∂ζ (6.42e)
z′ = er1 + u′ (6.42f)
m = λm er3 (6.42g)
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Replacing the expressions (6.42) into (6.41), the equilibrium equations of the plane case
are obtained and render:

(N cos θ − V sin θ)′ + λ p1 = 0 (6.43a)
(N sin θ + V cos θ)′ + λ p2 = 0 (6.43b)
M ′ +

(
1 + u′1

)
(N sin θ + V cos θ)− u′2 (N cos θ − V sin θ) + λm = 0 (6.43c)

The previous equilibrium equations can be obtained considering the equilibrium in the
deformed configuration, as carried out in Reissner (1972).

Boundary conditions

Boundary conditions are required to solve the governing equations in the domain. If Ω
is the domain of the solution (length of the beam) and Γ is the boundary contour (extreme
points of the beam), the following types of boundary conditions can be defined:

• Static condition: prescribed forces (F 1 and F 2) and moment (M) on the boundary
Γt,

n (N cos θ − V sin θ)− λF 1 = 0 (6.44)
n (N sin θ + V cos θ)− λF 2 = 0 (6.45)

nM − λM = 0 (6.46)

where n is the outward normal to the cross-section of the beam, that takes the values
(+1) or (−1).

• Kinematic condition: prescribed displacements (u1 and u2 ) and rotation (θ) on the
boundary Γd,

u1 = λu1 (6.47)
u2 = λu2 (6.48)
θ = λ θ (6.49)

In the current problem, the boundary is expressed as Γ = Γt∪Γd such that Γt∩Γd = ∅.

6.2.5 Linearization of the weak form

Internal virtual work

The incremental perturbation of the internal virtual work is given by:

∆δWint =
∫ `r

0
∆σr · δεr dζ +

∫ `r

0
σr ·∆δεr dζ (6.50)

The first term contains the generalized material stiffness and the second term includes a
generalized geometric stiffness.

Developing the integrands, one obtains,

∆σr · δεr = (D∆εr) · δεr (6.51a)
σr ·∆δεr = N ∆δε+ V ∆δγ +M ∆δχ (6.51b)
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where the perturbations of the generalized strains are explicitly given by,

∆δε = δu′1 (− sin θ) ∆θ +
(
1 + u′1

)
(− cos θ) δθ∆θ + ∆u′1 (− sin θ) δθ+

+ δu′2 cos θ∆θ + ∆u′2 cos θ δθ + u′2 (− sin θ) δθ∆θ (6.52a)

∆δγ = δu′2 (− sin θ) ∆θ + ∆u′2 (− sin θ) δθ + u′2 (− cos θ) δθ∆θ−
− δu′1 cos θ∆θ −∆u′1 cos θ δθ −

(
1 + u′1

)
(− sin θ) δθ∆θ (6.52b)

∆δκ = ∆
(
δθ′
)

= 0 (6.52c)
and the constitutive matrix, D, can be computed as:

D = ∂σr

∂εr
⇔D =


∂N
∂ε

∂N
∂γ

∂N
∂κ

∂V
∂ε

∂V
∂γ

∂V
∂κ

∂M
∂ε

∂M
∂γ

∂M
∂κ

 (6.53)

Each coefficient of the matrix D defined in the expression (6.53) can be developed as:

∂N

∂ε
=
∫
Ar

∂σ
(
ε− ε∆θ

)
∂ε

dAr =
∫
Ar

∂σ
(
ε− ε∆θ

)
∂
(
ε− ε∆θ

) ∂
(
ε− ε∆θ

)
∂ε

dAr =

=
∫
Ar

∂σ (ε)
∂ε

∂
(
ε− ε∆θ

)
∂ε︸ ︷︷ ︸
=1

∂ε

∂ε︸︷︷︸
=1

dAr =
∫
Ar

∂σ (ε)
∂ε

dAr
(6.54a)

∂N

∂γ
= 0 (6.54b)

∂N

∂κ
=
∫
Ar

∂σ
(
ε− ε∆θ

)
∂κ

dAr =
∫
Ar

∂σ
(
ε− ε∆θ

)
∂
(
ε− ε∆θ

) ∂
(
ε− ε∆θ

)
∂κ

dAr =

=
∫
Ar

∂σ (ε)
∂ε

∂
(
ε− ε∆θ

)
∂ε︸ ︷︷ ︸
=1

∂ε

∂κ︸︷︷︸
=−ξ

dAr = −
∫
Ar
ξ
∂σ (ε)
∂ε

dAr
(6.54c)

∂V

∂ε
= 0 (6.54d)

∂V

∂γ
=
∫
Ar

∂τ (γ)
∂γ

dAr (6.54e)

∂V

∂κ
= 0 (6.54f)

∂M

∂ε
=
∫
Ar

∂
(
−ξσ

(
ε− ε∆θ

))
∂ε

dAr = −
∫
Ar
ξ
∂σ (ε)
∂ε

dAr (6.54g)

∂M

∂γ
= 0 (6.54h)

∂M

∂κ
=
∫
Ar

∂
(
−ξσ

(
ε− ε∆θ

))
∂κ

dAr = −
∫
Ar
ξ
∂
(
σ
(
ε− ε∆θ

))
∂κ

dAr =

= −
∫
Ar
ξ
∂
(
σ
(
ε− ε∆θ

))
∂
(
ε− ε∆θ

) ∂
(
ε− ε∆θ

)
∂κ︸ ︷︷ ︸

=−1

dAr =
∫
Ar
ξ2∂σ (ε)

∂ε
dAr

(6.54i)
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hence,

D =
∫
Ar


∂σ(ε)
∂ε 0 −ξ ∂σ(ε)

∂ε

0 ∂V
∂γ 0

−ξ ∂σ(ε)
∂ε 0 ξ2 ∂σ(ε)

∂ε

 dAr (6.55)

Similarly to (6.33), ∆εr = Ψ (∆∆d). Replacing this result and (6.33) into (6.51a)
renders,

∆σr · δεr = (∆δd)T ΨT DΨ (∆∆d) (6.56)
and the matrix form of (6.51b) is,

σr ·∆δεr = σr ·∆ (Ψ∆δd) = ∆ (σr ·Ψ∆δd) = ∆
(
ΨTσr ·∆δd

)
=

=
∂
(
ΨTσr

)
∂ (∆d) ∆ (∆d) ·∆δd = (∆δd)T G (∆∆d) (6.57)

where, considering the expressions (6.52),

∆δd =


δu′1
δu′2
δθ′

δθ

 (6.58a)

G =


0 0
0 0
0 0

−N sin θ − V cos θ N cos θ − V sin θ

· · ·

· · ·

0 −N sin θ − V cos θ
0 N cos θ − V sin θ
0 0
0 (1 + u′1)(V sin θ −N cos θ)− u′2(N sin θ + V cos θ)


(6.58b)

∆∆d =


∆u1
∆u2
∆θ′
∆θ

 (6.58c)

External virtual work

The incremental perturbation of the external virtual work is given by:

∆δWext = ∆
∫ `r

0
δdT (λf) dζ (6.59)

which, for non configuration dependent loadings, is null.

6.3 Spatial discretization by finite elements

6.3.1 Implementation of the elemental system

A displacement-based formulation in which the displacements at the nodes are the
fundamental unknowns is used. It is considered a discretization of the form,

d(e) = Φ(e) d(e) (6.60)
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where d(e) is the generalized displacement vector, Φ(e) are shape functions and d(e) is the
nodal generalized displacement vector at each finite element. The approximation for the
iterative and incremental generalized displacement vectors is:

δd(e) = Φ(e) δd(e) (6.61a)
∆d(e) = Φ(e) ∆d(e) (6.61b)

By substituting the approximation (6.61a) into the internal virtual work expression (6.35),
it is obtained:

δWint =
∫ `(e)r

0

(
∆ δd(e)

)T
Ψ(e)Tσ(e)r dζ(e) =

= δd(e)T
∫ `(e)r

0

(
∆ Φ(e)

)T
Ψ(e)Tσ(e)r dζ(e) (6.62)

Proceeding in the same way, the external virtual work can be written as,

δWext = δd(e)T λ

∫ `(e)r

0
Φ(e)Tf (e) dζ(e) (6.63)

and the weak form of the equilibrium (6.38) is:

δW ≡ δd(e)T
(∫ `(e)r

0

(
∆ Φ(e)

)T
ψ(e)Tσ(e)r dζ(e) − λ

∫ `(e)r

0
Φ(e)Tf (e) dζ(e)

)
= 0 (6.64)

Besides the trivial solution, δd(e) = 0, the previous equation renders r(e) = 0, where
r(e) is the elemental residual vector,

r(e) =
∫ `(e)r

0

(
∆ Φ(e)

)T
Ψ(e)Tσ(e)r dζ(e) − λ

∫ `(e)r

0
Φ(e)Tf (e) dζ(e) (6.65)

which can be subdivided in the internal and external elemental residual vectors:

r(e)
int =

∫ `(e)r

0

(
∆ Φ(e)

)T
Ψ(e)Tσ(e)r dζ(e) (6.66a)

r(e)
ext = −λ

∫ `(e)r

0
Φ(e)Tf (e) dζ(e) (6.66b)

For a generic element (e), the results presented in section 6.2.5 can be written as:

∆δWint =
∫ `(e)r

0

(
∆δd(e)

)T
Ψ(e)T DΨ(e)

(
∆∆d(e)

)
dζ(e)+

+
∫ `(e)r

0

(
∆δd(e)

)T
G
(
∆∆d(e)

)
dζ(e) (6.67)

Replacing (6.61) into (6.67), one obtains:

∆δWint = δd(e)T
(∫ `(e)r

0

(
∆Φ(e)

)T
Ψ(e)T DΨ(e)

(
∆Φ(e)

)
dζ(e)+

+
∫ `(e)r

0

(
∆Φ(e)

)T
G
(
∆Φ(e)

)
dζ(e)

)
∆d(e) (6.68)
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Element type r(e)
int r(e)

ext K(e)
g , K(e)

m

p nG p nG p nG

L2 0 1 1 1 2 2
L3 1 1 2 2 4 3
L4 2 2 3 2 6 4

Table 6.1: Polynomial degree (p) of the integrand function and number of Gauss points
(nG) required for the exact numerical integration, where Ln denotes Lagrange element
with n nodes.

Hence, the tangent stiffness matrix can be calculated as,

K(e) = K(e)
g +K(e)

m (6.69)

whereK(e)
g andK(e)

m are the geometric and material terms in the element (e), respectively:

K(e)
g =

∫ `(e)r

0

(
∆Φ(e)

)T
G
(
∆Φ(e)

)
dζ(e) (6.70a)

K(e)
m =

∫ `(e)r

0

(
∆Φ(e)

)T
Ψ(e)T DΨ(e)

(
∆Φ(e)

)
dζ(e) (6.70b)

The global tangent matrix and residual vector will be obtained by assembly of the
elemental vectors and matrices described in the present section. The nonlinear system of
equations will be solved for the free degrees of freedom.

6.3.2 Computational considerations

The developed code requires two different meshes: (i) a one-dimensional mesh to dis-
cretize the length of the bar, and (ii) a two-dimensional mesh to discretize the cross
section.

One-dimensional elements of n nodes can be used and an isoparametric formulation is
used to compute the Lagrangian shape functions of the elements, which are polynomial
functions. The two-dimensional finite elements can be quadrilateral of 4, 8, 9, 12 and 16
nodes, or triangular with 3, 6 and 10 nodes, which were already defined in figure 3.4. The
two-dimensional mesh employed is the one used for the computation of the temperature
field using the formulation described in chapter 5.

The Gauss–Legendre quadrature was programmed to compute the integrals involved in
the residual vector and tangent matrix. The number of Gauss points required to integrate
exactly the polynomial expressions that appear in the integrands was calculated, assuming
that the nonlinear operators are constant (see table 6.1).

In order to alleviate the shear locking phenomenon, a simple selective/reduced inte-
gration scheme is employed.

The numerical integration of the internal residual vector is explicitly showed due the
complexity regarding the calculation of the stresses, as these depend on the strains and
temperature.

The generalized stresses in a cross section can be computed using the equation (6.29).
Applying the numerical integration, each component of the generalized stress vector can
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be computed knowing the generalized strain vector, εr, as,

N =
∫
Ar
σ dAr =

n∑
e=1

nG∑
pG=1

σ (εpG) |J|pGwpG (6.71a)

V =
∫
Ar
τ dAr =

n∑
e=1

nG∑
pG=1

τ (γpG) |J|pGwpG (6.71b)

M = −
∫
Ar
ξ2 σ dAr = −

n∑
e=1

nG∑
pG=1

(ξ2)pG σ (εpG) |J|pGwpG (6.71c)

where (ξ1, ξ2)pG are the natural coordinates of the Gauss point, |J|pG is the determinant
of the Jacobian matrix evaluated at the Gauss point, wpG is the weight value and εpG and
γpG are the longitudinal deformation and angular distortion, respectively, computed at a
Gauss point as:

εpG = ε− (ξ2)pG κ− ε∆θpG (6.72a)
γpG = γ (6.72b)

The equations (6.71) depend on the constitutive equation and n is the number of elements
of the mesh used for the spatial discretization of the cross section.

Hence, the global internal residual vector can be computed as,

rint =
m

A
e=1

nG∑
pG=1

(
∆ Φ(e)

)T
pG

Ψ(e)T
pG σ

(e)r
pG JpGwpG (6.73)

where JpG is the Jacobian of the one-dimensional transformation. Notice that the value of
the weight, the Jacobian and the number of Gauss points in expression (6.73) are different
from those shown in equation (6.71). The integral of the cross section in equation (6.71)
is computed using the number of Gauss points defined in chapter 3.

The same process can be applied to compute the geometric and material tangent
matrices. In this case, instead of the value of the stresses in the Gauss points in expres-
sions (6.71), the derivative of the generalized stresses with respect to the strain has to be
computed.

The resulting nonlinear system of equations is solved using the incremental/iterative
Newton–Raphson method, which is described in the appendix B.6.

6.4 Numerical examples

6.4.1 Introduction

In the present section mechanical and thermomechanical applications of the developed
code are shown. The selected problems allow verifying the accuracy of the numerical results
obtained with the employed theory, as they can be compared with the exact solutions of
the problems or with results proposed by different authors.

In all the examples presented, the constitutive relation is linear and expressed by,

σ = E
(
ε− ε∆θ

)
(6.74a)

τ = G
(
γ − γ∆θ

)
(6.74b)
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where E is the Young’s modulus, G is the shear modulus and ε and ε∆θ are the axial
deformation due to the mechanical loads and to the temperature gradient, respectively.

The following benchmark problems were analysed:

• Cantilever beam loaded with a transversal point load (section 6.4.2).

• Square diamond frame (section 6.4.3).

• Square frame (section 6.4.4).

• Pure bending of a cantilever beam (section 6.4.5).

The first three examples present simple applications of the geometrically exact beam
theory. These examples are used for the verification of the FE code developed.

The last example, presented in 6.4.5, illustrates the computation of the generalized
strains, stresses and displacements of a beam subjected to a uniform, ∆θU , and linear,
∆θL, temperature gradient. In this particular problem, the axial deformation and the
angular distortion at any point of the cross section can be computed as,

ε∆θ = α∆θ (ξ2) = α

(
∆θU − ξ2

∆θL
h

)
(6.75a)

γ∆θ = 0 (6.75b)

where α is the thermal expansion coefficient and h is the height of the cross section.
The generalized stress vector is given by,

σr = D
(
εr − (εr)∆θ

)
(6.76)

whose matricial form is,
N
V
M

 =

 EA 0 −ES
0 GA∗ 0
−ES 0 EI




ε
γ
κ

−

α∆θU

0
α∆θL

h


 (6.77)

where A, S and I are the zero, first and second order area moments of the cross section in
the undeformed position, i.e., the area, the static and the inertia moment. The variable
A∗ is the reduced area, which can be computed as A∗ = κA where κ is the shear correction
factor3.

In all the following examples, the load parameter, λ, varies between 0 and 1.

6.4.2 Cantilever beam loaded with a transversal point load

A cantilever beam with a vertical point load applied in the free end, as figure 6.2a
shows, is analysed using the geometrically exact beam theory. The cross section of the
unit length beam has a second order moment (or inertia moment) equal to 8.(3) ·10−6 and
an area equal 10. The shear correction factor is set as 1. The Young´s modulus is equal
to 106. The shear modulus was computed considering that the material is elastic and the
Poisson ratio is 0, thus, the shear modulus is equal to 0.5 ·106. The vertical load is applied
in 50 steps until reaching the maximum value, which is equal to 83.(3) in this simulation.

3There is a notation conflict as in the current expression, κ refers to the shear correction factor used
in the Timoshenko’s beam theory and not the curvature of the beam axis.
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(a) Cantilever geometry.
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(b) Load-deflection and load-rotation curves at the
free end of the beam.

Figure 6.2: Cantilever beam.
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Figure 6.3: Deformed configurations for the cantilever beam, where the numbers are the
different load steps.

Figure 6.2b illustrates the load-deflections and load-rotation curves obtained at the
free end and figure 6.3 displays the mesh of 5 quadratic elements used and the deformed
shapes for different load steps (the white and black dots indicate the start-end and the
central nodes of the element, respectively). Table 6.2 summarizes the numerical results
obtained and the reference values (Mattiasson, 1981), for different values of the parameter,
λ. A good agreement is observed between the reference and the computed results. It can
be noticed that the horizontal displacement at the free end is not null and the length of
the beam is approximately constant in all load steps.

Figure 6.4 depicts the iterative norm of the residual vector obtained in the compu-
tation of the first 5 load steps and it can be observed that quadratic convergence of the
computational process in the asymptotic limit of the solution is obtained.
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λ
Reference values Numerical values

−u1 −u2 −θ −u1 −u2 −θ

0.02 0.00265 0.06636 0.09964 0.002646515 0.066364802 0.099636148
0.04 0.01035 0.13098 0.19716 0.010353786 0.130975804 0.197154509
0.06 0.02249 0.19235 0.29074 0.022487355 0.192350937 0.290737391
0.08 0.03817 0.24945 0.37906 0.038165040 0.249452097 0.379062153
0.1 0.05643 0.30172 0.46135 0.056432310 0.301720994 0.461350364
0.12 0.07640 0.34901 0.53730 0.076398944 0.349009716 0.537301499
0.14 0.09732 0.39147 0.60698 0.097314865 0.391464536 0.606971696
0.16 0.11860 0.42941 0.67065 0.118593452 0.429410504 0.670648408
0.18 0.13981 0.46326 0.72876 0.139802026 0.463260351 0.728747644
0.2 0.16064 0.49346 0.78175 0.160637381 0.493452473 0.781740770
0.3 0.25442 0.60325 0.98602 0.254409652 0.603238695 0.985995906
0.4 0.32894 0.66996 1.12124 0.328922266 0.669937066 1.121204377
0.5 0.38763 0.71379 1.21537 0.387599235 0.713750427 1.215318766
0.6 0.43459 0.74457 1.28370 0.434548218 0.744514952 1.283633868
0.7 0.47293 0.76737 1.33496 0.472874238 0.767296944 1.334883084
0.8 0.50483 0.78498 1.37443 0.504761027 0.784893556 1.374342287
0.9 0.53182 0.79906 1.40547 0.531739519 0.798949448 1.405364667
1.0 0.55500 0.81061 1.43029 0.554899476 0.810485171 1.430174454

Table 6.2: Generalized displacement values obtained when a vertical load is applied at the
free end of the beam P = 83.(3).

In addition, a further test was carried out in which the load is increased (100 times)
until an almost vertical straight position is attained. Figure 6.5 shows the evolution of
the deformed shapes and the load-deflection/load-rotation curves in the free end. At the
end of the process, the horizontal displacement at the free end of the beam is near to its
original length. The rotation at that point is approximately equal to −1.57 rad, which
corresponds to 89.95◦.

6.4.3 Square diamond frame

Figure 6.6a shows a square diamond frame loaded with two point loads, which is the
verification example analysed in the present subsection. To minimize the computational
time, symmetry conditions were used and, thus, only half of the geometry of the square
diamond was modelled, as depicted in figures 6.6b and 6.6c. All the beams are unit length.

The cross section has a second order moment equal to 8.(3) · 10−6 and an area equal
0.01. The shear correction factor is set as 1. The Young’s modulus is equal to 106. The
shear modulus was computed considering that the material is elastic and the Poisson ratio
is 0, thus, the shear modulus is equal to 0.5 · 106. The absolute value of the vertical load
applied, P , is equal to 83.(3). This problem is analysed in tension and in compression, as
figure 6.6 shows.

Figure 6.7 shows the numerical results obtained using a mesh of 10 linear elements in
each bar and the reference values provided in Mattiasson (1981).
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Figure 6.4: Norm of the residual vector obtained at each iteration in the cantilever beam
problem (first 5 load steps).

(a) Deformed configurations.
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(b) Load-displacement and load-rotation at the
free end.

Figure 6.5: Cantilever results for a load equal to P = 8333.

The horizontal displacement represented is that computed in the node 11 of the model
(the vertical displacement and the rotation are null), while the vertical displacement and
the rotation are those computed in node 21 (the horizontal displacement is equal to 0).
The nodes are identified in figure 6.6b. Figure 6.8 illustrates the deformed shape for
different load steps (5, 10, 15, 20, 25, 30, 35, 40, 45 and 50). The load was applied in 50
steps in order to obtain numerical results comparable with those presented in Mattiasson
(1981) and, in both cases, good agreement between the numerical and the reference results
is observed.

Figure 6.9 plots the norm of the residual vector at each iteration for the first 5 load
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(c) Half-diamond loaded in
compression.

Figure 6.6: Pinned-fix square diamond.
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(a) Tension.
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(b) Compression.

Figure 6.7: Load-displacement and load-rotation in the square diamond.

steps. In the asymptotic limit of the solution, the convergence of the iterative error is
quadratic.

During the computation of the shape function it was considered that there is no contact
between the frames. Figure 6.10 shows the deformed shapes of the diamond square loaded
in compression obtained at different load steps. It can be observed that the horizontal
displacement at node 11 changes of signal, being positive until the load step 12 and being
negative after that. This fact is illustrated in figure 6.10 and also in 6.7b.
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Figure 6.8: Deformed
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square half-diamond
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Figure 6.9: Norm of the residual vector obtained for the
half-diamond loaded in tension (during the computation of
the first 5 load steps).

(a) Load steps 1, 5, 10 and 12. (b) Load steps 13, 15, 20, 30, 40 and 50.

Figure 6.10: Deformed shape plots of the square half-diamond loaded in compression.

6.4.4 Square frame

A square frame with the geometry showed in figure 6.11 is analysed in the present
subsection. All the beams are unit length and present the same characteristics than those
in section 6.4.3. The absolute value of the vertical applied load, P , is equal to 33.(3).
Again, tension and compression loadings are considered.

The numerical results reported in this work were obtained using a mesh with 160 linear
elements, i.e., each frame of length L was divided in 20 linear elements. The numerical
results obtained are compared with those presented in Mattiasson (1981) and depicted in
in figures 6.12 and 6.13. The deformed shapes for different load steps are also illustrated.
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Figure 6.11: Square frame and boundary conditions.

(a) Deformed shape at steps 5, 10, 15 and 20.
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(b) Displacement and rotation curves.

Figure 6.12: Results of the square frame loaded in tension.

The horizontal displacement, the vertical displacement and the rotation plotted are
those computed in nodes 21, 61 and 41, respectively. The position of the nodes can be
consulted in figure 6.11a. As in the previous example, a good agreement between the
numerical and the reference results is observed.

6.4.5 Pure bending of a cantilever beam

Simo and Vu-Quoc (1986) solved the problem of a straight beam of unit length with a
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(a) Deformed shape at steps 5, 10, 15 and 20.
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(b) Vertical displacement and rotation curves.

Figure 6.13: Results of the square frame loaded in compression.

λM

L

Figure 6.14: Pure bending cantilever beam.

moment applied on the right end using the geometrically exact beam theory, see figure 6.14.
The cross section has a second order moment equal to 2 and an area equal to 1. The

shear correction factor is set as 1. The Young´s modulus is equal to 1. The shear modulus
was computed considering that the material is elastic and the Poisson ratio is 0, thus, the
shear modulus is equal to 0.5.

In this section, the referred problem was solved applying a bending moment such that
the rotation is θ = 4π. Hence, knowing that the bending stiffness is EI = 2, the bending
moment, M , required to force the rod to deform into two fully closed circles is given by:

M = κEI = θ

L
EI = 8π (6.78)

The moment is applied in 6 steps, getting the convergence to the solution in five
iterations for each step.

The exact generalized displacements at the free end of the cantilever are:

u1 = −L
(

1−
sin λML

EI
λML
EI

)
(6.79a)

u2 = EI

λM

(
1− cos λML

EI

)
(6.79b)

θ = λML

EI
(6.79c)
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(a) Five one-dimensional linear elements. (b) Five one-dimensional quadratic elements.

Figure 6.15: Rod deformed position at each load step.
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(a) Five one-dimensional linear elements.
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(b) Five one-dimensional quadratic elements.

Figure 6.16: Evolution of the generalized displacement at the point situated at the end of
the rod.

The presented problem was solved employing two different one-dimensional meshes
with: (i) five linear and (ii) five quadratic elements. Figures 6.15 and 6.16 illustrate
the computed beam’s deformed configurations and the corresponding evolution of the
generalized displacement vector at the free end of the beam, respectively. The latest figure
also presents the exact solution of the problem (markers), being possible to conclude that
both the meshes are able to evaluate an accurate displacement field at the tip of the
rod. However, figure 6.15 indicates that only the mesh with quadratic elements is able to
represent properly the displacement field of all the points in the rod. In order to obtain a
similar results with linear elements, a more refined mesh is required.
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Figure 6.17: Norm of the residual vector for the pure bending cantilever beam problem
(6 load steps).

Figure 6.17 displays the relative iterative errors obtained in the computational analysis
in 6 load steps, attesting the quadratic convergence in the asymptotic limit when the error
of the numerical solution tends to zero.

The same example was solved using the Timoshenko beam theory (TBT ), as an exercise
to compare the results and observe the potential use of the geometrically exact beam theory
(GEBT ). Table 6.3 summarizes the displacement and rotation values obtained in the free
end of the rod. It can be observed that the TBT is not able to represent the displacement
field of the rod.

Similar behaviour can be obtained by applying a linear variation of the temperature,
∆θL, in all the cross sections along the span of the beam. In this simulation, the tem-
perature gradient is imposed directly, i.e., without using the routine to integrate the
temperatures along the cross section. In fact, one of the possibilities of the developed pro-
gram to apply temperature gradients is to prescribe temperatures in the bottom and top
faces of the beam. To solve the same problem using the integration of the temperatures
in the section, a vector with the temperatures at each node of the cross section should be
created previously as an input.

Generalized Quadratic elements Linear elements
displacement GEBT TBT GEBT TBT

u1 −1 0 −1 0
u2 0 6.283185 0 6.283185
θ 12.566371 12.566371 12.566371 12.566371

Table 6.3: Generalized displacement values obtained when M = 8π.

The nodal equivalent moment due to the temperature distribution is given by,

M = EIα∆θL
h

= 4π
L
EI ⇒ ∆θL = 4πh

αL
(6.80)
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Figure 6.18: Deformed shape for 10 steps of the cantilever beam when a linear gradient
of temperature is applied.

Step u1 u2 θ

0 0.000000000000 0.000000000000 0.000000000000
1 −0.24317397180 0.549866295872 1.256637061498
2 −0.76613116303 0.719774269590 2.513274122934
3 −1.15590300291 0.479820105319 3.769911184370
4 −1.18916047181 0.137433127360 5.026548245806
5 −0.99999999997 −0.00000000000 6.283185307242
6 −0.87402479244 0.091526345778 7.539822368677
7 −0.93334337254 0.205148005029 8.796459430113
8 −1.05821511003 0.179167685689 10.05309649155
9 −1.08348658462 0.060656554230 11.30973355298
10 −0.99999999999 0.000000000000 12.56637061442

Exact (step 10) −1.000000000000 0.000000000000 4π ≈12.56637061435
Table 6.4: Generalized displacements in the free end of the cantilever beam.

where h is the cross section height. The temperature at the bottom face will be equal to
∆θL/2 and in the top face it will be (−∆θL/2), which are applied in 10 steps. All variables
are considered equal to 1, as the example presented is theoretical. The results obtained in a
cantilever using a mesh of 5 one-dimensional quadratic elements are reported in figure 6.18
and table 6.4. Once again, a good agreement was obtained between the numerical results
and the exact solution.

6.5 Concluding remarks

In the present chapter a compact finite element formulation of the thermomechanical
problem based on the geometrically exact beam theory is presented.

The in-house code developed constitutes a powerful tool to compute the mechanical
behaviour of beams and columns with large displacements, considering the nonlinearities
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due to the geometry and the temperature-dependent mechanical properties of the material.
The mechanical code was verified through benchmark solutions available in the literature.
In all the examples presented, an excellent agreement between the numerical and the
reference results was observed. Quadratic convergence of the iterative error was always
achieved in the asymptotic limit of the solution.





Chapter 7

Thermomechanical simulations in
GFRP beams and columns

7.1 Introduction

In the present chapter, nonlinear thermomechanical transient numerical simulations of
GFRP beams and columns using the code described in the previous chapters are presented.
The numerical results obtained are compared with the experimental data obtained in the
tests carried out by Morgado et al. (2013a,b) at IST/ICIST (Portugal) within the project
PTDC/ECM/100779/2008.

The chapter is organized in the following nine main sections:

1. Brief summary of the experimental programme (section 7.2).

2. Analysis of the thermal properties of the GFRP and calcium silicate (CS) materials
(section 7.3).

3. General characteristics of the thermal modelling (boundary conditions, mesh, time
step size and geometry of the cross section) of the tubular cross section exposed to
fire in the bottom face and definition of the thermal properties of the GFRP that
provide the best agreement with the experimental data (section 7.4).

4. Thermal simulations of the unprotected and protected square-tubular and I-section
GFRP profiles exposed to different fire scenarios (section 7.5).

5. General characteristics of the thermomechanical modelling of beams and columns
(boundary conditions, mesh and temperature distribution along the length of the
bars) and temperature-dependent mechanical properties of the GFRP and CS (sec-
tion 7.6).

6. Thermomechanical simulations of GFRP beams and columns exposed to different fire
scenarios and comparison between the numerical and the experimental temperatures
(section 7.7).

7. Additional numerical tests, in which the ability of the thermal code to simulate the
thermal response of the GFRP profiles subjected to different fire scenarios (compared
to those used in the experiments) for a sufficiently long duration of fire exposure (for
practical applications) was investigated (section 7.8).

147
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8. Conclusions (section 7.9).

7.2 General description of the problem and of the
thermomechanical modelling

The present chapter centres on the thermomechanical simulation of protected and
unprotected GFRP beams and columns. The numerical results obtained are compared
with the experimental data resulting from fire resistance tests developed by Morgado
et al. (2013a,b) at IST. In those tests, the setups presented in figures 7.1a and 7.1b were
used for beams and columns, respectively.

GFRP profiles with square-tubular and I-section were experimentally tested as beams
and columns. In all the fire resistance tests, thermocouples were installed at different
positions to record the temperature evolution. These data were used to define the most
adequate mathematical model for reproducing the thermal behaviour of the GFRP profiles.
Furthermore, in the experiments, displacement transducers were installed to measure the
deflections at the midspan of the beams and at the central section of columns; the axial
shortening was also measured in columns.

In the fire resistance tests, the bars (both beams and columns) were mechanically
loaded and a temperature variation according with the standard ISO 834 (1975) was
imposed: (i) in the bottom face, keeping the lateral faces insulated, or (ii) in the bottom
and lateral faces. In all the tests, the top face was exposed to the ambient temperature and,
in order to protect the profiles from the wind, a system comprising four flame retardant
blankets and two agglomerated cork panels (Morgado et al., 2013b) was installed around
the setup. As a result, it can be considered that no forced convection occurred in the top
of the profile and, thus, the exchange of heat on the top face can be modelled as natural
convection and radiation.

The thermomechanical model proposed consists of an uncoupled two-dimensional ther-
mal and one-dimensional mechanical model. The former allows computing the temperature
field in the cross section of the profile, while the latter allows obtaining the displacement
field in the bar.

Table 7.1 summarizes the thermomechanical simulations performed for the beams and
their main characteristics. All analyses were performed considering a beam span, L, of
1.3 m, as in the experimental tests. Point loads required to cause vertical displacements
in the midspan section of L/400 or L/250 were applied.

Table 7.2 summarizes the thermomechanical simulations performed for the columns.
The columns’ length, L, was set as 1.5 m, in agreement with the experimental tests. Axial
loads required to cause axial shortening in the columns of L/1500 (55 kN and 25 kN in
the tubular and I sections, respectively) or L/750 (110 kN in the tubular section) were
applied.

7.3 Thermal properties of the materials

7.3.1 GFRP material

The thermal conductivity and the specific heat capacity are thermophysical material
properties that depend on factors such as the temperature, the density, the humidity,
the porosity and the permeability. Due to the absence of experimental results, the men-
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Figure 7.1: Setup of the experimental full-scale fire resistance tests in GFRP (a) beams
and (b) columns, where the dimensions are in millimetres (adapted from Morgado et al.,
2013a,b).
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Cross section Experimental series Fire exposure Fire protection Load level

Square
tubular
section

S1 1-face —
L/400 (11.7 kN)CS

S2 3-faces —
L/400 (11.7 kN)CS

S3 1-face —
L/250 (18.7 kN)CS

I-section I2 3-faces —
L/400 (7.4 kN)CS

Table 7.1: Numerical simulations of the beams.

Cross section Experimental series Fire exposure Fire protection Load level

Square
tubular
section

S1 1-face —
L/1500 (55 kN)CS

S2 3-faces —
L/1500 (55 kN)CS

S3 1-face —
L/750 (110 kN)CS

I-section I2 3-faces —
L/1500 (25 kN)CS

Table 7.2: Numerical simulations of the columns.

tioned properties were computed using the analytical models proposed by Samanta et al.
(2004), Tracy (2005) and Bai et al. (2007). In the present section, a brief description of
the models is reported. Further information can be consulted in Fernandes (2009).

Samanta et al. (2004) present an analytical model based on the rule of mixtures to
estimate the thermal conductivity and the specific heat capacity of GFRP. The material
is considered to be formed by the matrix and the fibres. The thermal conductivity of the
composite can be computed as a combination of the thermal conductivity of the matrix
and the fibres. The specific heat capacity can be computed in the same way. Figure 7.2
represents the evolution of the thermal conductivity and the specific heat capacity as a
function of temperature, according to the model of Samanta et al. (2004).

Tracy (2005) presents numerical values of thermal conductivity and specific heat ca-
pacity based on experimental tests; no analytical expressions are proposed. Figure 7.3a
illustrates the evolution of the thermal conductivity as a function of temperature, as sug-
gested by Tracy (2005). It can be observed that the thermal conductivity remains constant
until approximately 250 ◦C (decomposition temperature of the matrix), when it suffers a
pronounced reduction due to the protection that the burnt material confers to the virgin
material. However, when the state of decomposition is advanced, the char material dissoci-
ates and only the fibres remain. Consequently, at around 800 ◦C, the thermal conductivity
increases because the fibres have five times higher thermal conductivity than the matrix.

Figure 7.3b shows the progression of the specific heat capacity as a function of tem-
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(a) Thermal conductivity.
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(b) Specific heat capacity.

Figure 7.2: Thermo-physical properties of the GFRP composite as a function of temper-
ature (Samanta et al., 2004).
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(a) Thermal conductivity.
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(b) Specific heat capacity.

Figure 7.3: Thermo-physical properties of the GFRP composite as a function of temper-
ature (Tracy, 2005).

perature according to Tracy (2005). In the modelling of the specific heat capacity, the
dehydration of the material and the endothermic reaction of the matrix are considered.
The specific heat capacity remains constant with the exception of two abrupt increments.
The first one occurs at 90-110 ◦C, due to the evaporation of the water contained in the ma-
terial. The second one occurs between 275-450 ◦C, being due to the endothermic reactions
that take place during the decomposition of the matrix.

Both Samanta et al. (2004) and Tracy (2005) presented models where the thermophys-
ical properties of the composite are obtained as a mixture of the individual properties of
the fibres and the matrix. In these models, the delamination of the composite during the
burning process is not considered.
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(b) Specific heat capacity.

Figure 7.4: Thermo-physical properties of the GFRP composite as a function of temper-
ature (Bai et al., 2007).
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(b) Specific heat capacity.

Figure 7.5: Thermo-physical properties of the GFRP composite as a function of temper-
ature.

Bai et al. (2007) presented a model where the composite is assumed to be divided in
two layers, whose difference is the degree of degradation of the material. Two states are
designated: virgin (v) material, when it is not degraded; and char (c) material, when it is
damaged. The thermal conductivity and the specific heat capacity of the composite can
be obtained as a combination of those properties for the different degrees of degradation of
the composite. Figure 7.4 illustrates the evolution of the thermal conductivity and specific
heat capacity proposed by Bai et al. (2007).

Figure 7.5 plots the evolution of the thermal conductivity and the specific heat capacity
for all the models exposed.

Observing figure 7.5 some important differences in the values of the thermal conduc-
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tivity and specific heat capacity provided by the different models available in the literature
can be perceived. Regarding the thermal conductivity, the model proposed by Samanta
et al. (2004) provides significant differences when compared with the others, especially
after 200 ◦C. These are caused mainly by two reasons: (i) the model of Samanta et al.
(2004) does not consider the gas generated due to the matrix decomposition and allo-
cated in the pores of the matrix (this gas causes a reduction of the thermal conductivity);
and (ii) the analytical expressions proposed by Samanta et al. (2004) were adapted to
the material employed in the related experimental tests, which can be different from that
used by Tracy (2005) and Bai et al. (2007), which is roughly similar to the one used in
the present study. The latter models present similar values of the thermal conductivity,
differing mainly after 700 ◦C, where Tracy (2005) considers an increase of the thermal
conductivity due to the delamination and, subsequently, dissociation of the decomposed
material.

Regarding the specific heat capacity, in all models the maximum value is in the range
of temperatures for which the matrix decomposition occurs, i.e., between 275-450 ◦C. The
maximum value is not coincident in all models, but the area contained under the curve
between the mentioned 275-450 ◦C temperature range is similar. Furthermore, it can be
observed that the dehydration of the matrix at 100 ◦C is only significant in the model
of Tracy (2005); in the model of Bai et al. (2007) it is not considered.

The internal heat generation, G, of the GFRP was set as null, as the values of the
specific heat capacity presented in all models take into account the generation of internal
heat due to the water evaporation (except the model of Bai et al. (2007)) and matrix
decomposition.

The density of the GFRP composite was obtained by means of TGA tests. These tests
provide the loss of mass of the composite when heated. The material was tested under air
(O) and nitrogen (N) atmospheres at heating rates of 5, 10, 15 and 20 ◦C/min. Mouritz
et al. (2006) refer that the results obtained under nitrogen conditions represent with more
accuracy the variation of the density in thick composites, as the results obtained in air
atmosphere are more representative of the superficial behaviour of the composite and not of
the bulk of the material. Hence, in the present thesis the evolution of the density with the
temperature considered is the one obtained under nitrogen conditions. Figure 7.6 displays
the variation of the density as a function of temperature. A moderate decrease of density
takes place until the decomposition temperature (approximately 370 ◦C) is attained. In
this moment, an abrupt reduction of the density occurs due to the decomposition of
the matrix and, subsequently, the density remains roughly constant corresponding to the
inorganic components of the GFRP composite, i.e., the glass fibres and the fillers.

The emissivity is a temperature-dependent physical property of the material. Samanta
et al. (2004) suggest a linear variation of the emissivity of the GFRP between 0.75 at
20 ◦C and 0.95 at 1000 ◦C. The Eurocode 1 (1995) recommends using an emissivity equal
to 0.7 if this material property is unknown. As the only reference found regarding the
emissivity of the GFRP is that of Samanta et al. (2004), numerical simulations consid-
ering both situations were carried out in order to assess their influence in the agreement
between numerical and experimental results. The Stefan–Boltzmann’s constant is set as
σ = 5.669 · 10−8 W/(m2 K4).
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Figure 7.6: GFRP density as a function of temperature.

7.3.2 Air

The thermal properties of the air are assumed as constant and equal to those at 20 ◦C:
ν = 1.67 · 10−5 m2/s, k11 = k22 = 0.0256912 W/(m ◦C), cp = 1004.592 J/(kg ◦C) and
ρ = 1.2 kg/m3. The Boussinesq model implemented requires also the thermal expansion
coefficient, β = 0.003 ◦C−1, and of the gravity force, whose vertical component is set equal
to −9.81 m/s2.

7.3.3 CS boards

The temperature-dependent thermal properties (thermal conductivity and specific
heat) of the CS boards were provided by the manufacturer. The temperature-dependent
density was obtained experimentally (TGA tests) and reported in Correia (2008). The
emissivity is set constant and equal to ε = 0.7, following the recommendation of the Eu-
rocode 1 (1995), since no references were found for this material. Figure 7.7 illustrates the
variation of the mentioned properties between 20 and 1000 ◦C.

7.4 Thermal modelling of the tubular profile exposed to
fire in 1-face

7.4.1 Preliminary comments

The present section contains different thermal studies regarding the thermal modelling
of the GFRP tubular profile exposed to fire in the bottom face. As mentioned, this test
was set as reference for the calibration of the mathematical model. The following aspects
were studied and discussed:

1. Boundary conditions in the cross section (section 7.4.2).

2. Spatial and temporal discretization (sections 7.4.3 and 7.4.4).

3. Influence in the temperature field of modelling the corners of the cavity as either
sharp or round (section 7.4.5).
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(c) Specific heat capacity.
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Figure 7.7: Thermo-physical properties of the calcium silicate as a function of temperature.

4. Influence of the GFRP temperature-dependent thermal properties on the agreement
between numerical and experimental temperatures (section 7.4.6).

The conclusions obtained from the studies reported are presented in section 7.4.7 and
they will be used on the modelling of the profiles simulated in section 7.5. In all the
thermal simulations presented, the stabilization SUPG was employed.

7.4.2 Discussion about the definition of the boundary conditions
adopted in the modelling

This section presents the analyses carried out about the boundary conditions used to
model the thermal response of the unprotected GFRP tubular profiles. The main goal of
this study is to compare the numerical and experimental time-temperature curves in the
thermocouples position, thus allowing to evaluate the capacity of the models to reproduce
with accuracy the measured results.
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Figure 7.8: Thermal boundary conditions prescribed in the different models of the GFRP
tubular cross section.

In all the models, convective and radiative heat fluxes are considered in the top and
in the bottom faces of the cross section, while the lateral faces are modelled as insulated,
i.e., adiabatic. The ambient temperature in the top face is fixed as 20 ◦C, while in the
bottom face the exterior air temperature is time dependent and given by (ISO 834, 1975),

θISO = θ0 + 345 log (8t+ 1) (7.1)

where θ0 (◦C) is the initial temperature and t (minutes) is the time of fire exposure. The
following four situations are considered to model the heat exchange in the cavity: (i) adi-
abatic walls; (ii) radiative heat exchange between the walls of the cavity; (iii) natural
convection due to the air located in the cavity; and (iv) both natural convection and ra-
diative heat exchanges in the cavity. In all models the initial temperature is set equal to
20 ◦C.

The boundary conditions considered in the thermal models are shown in figure 7.8 and
can be summarized as follows:

1. Top face: convective and radiative heat flux with constant ambient temperature
equal to 20 ◦C.

2. Bottom face: convective and radiative heat flux considering that the ambient tem-
perature follows the ISO 834 (1975) curve.
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(a) Mesh used in the models (i) and (ii).
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(b) Mesh used in the models (iii) and (iv).

Figure 7.9: Meshes designed for the boundary condition study.

3. Lateral faces: insulated.

4. Cavity faces:

a) Model (i): insulated.
b) Model (ii): radiative heat exchange between the cavity faces.
c) Model (iii): natural heat convection, wall condition (null normal velocity) and

no-slip condition (null tangential velocity).
d) Model (iv): both natural heat convection and radiative heat exchange.

The evaluation of the convective heat flux between the cross section and the exterior
air required the definition of the convective coefficient, h. This parameter depends on
the physical (or geometrical) configuration, the properties of the fluid involved (density,
viscosity, thermal conductivity, specific heat and coefficient of thermal expansion), the
velocity of the flow and the angle of attack of the flow. The analytical evaluation of h
is possible for simple systems. However, in general, it must be determined experimen-
tally. Tracy (2005) presented a test in a GFRP panel subjected to the ISO 834 (1975)
standard fire curve and proposed a linear variation of the convective coefficient from 5
to 50 W/(m2 ◦C), for temperatures between 20 and 1000 ◦C. In the present thesis, these
values are assumed in the thermal simulations.

In these analyses about the boundary conditions, the thermal properties assumed for
the GFRP are those suggested by Tracy (2005) and the emissivity is set as constant.

The different meshes generated are illustrated in figure 7.9. In models (i) and (ii) a
mesh with regular 9-nodes quadrilateral elements of 4 mm length was designed, as de-
picted in figure 7.9a. The mesh contains a total of 880 nodes and 176 quadrilateral
elements. The radiative and convective heat flux in the bottom and top faces is imposed
in 48 element sides. Additionally, the model (ii) contains 80 one-dimensional radiosity
quadratic elements to quantify the internal heat flux exchange between the faces of the
cavity. Figure 7.9b shows the mesh used in the models (iii) and (iv). The mesh is formed
by 3249 nodes and 784 quadrilateral elements (400 Q2Q1 elements in the fluid and 384
9-nodes elements in the solid). Furthermore, 56 element sides are used to impose the
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Figure 7.10: Cross section geometry and ther-
mocouples distribution (dimensions in meters).

Table 7.3: Thermocouples position
in the GFRP cross section.

radiative and convective heat exchanges of the GFRP with the ambient and the air of the
furnace. Additionally, in the model (iv) 80 one-dimensional radiosity quadratic elements
are employed to approximate the radiative heat exchange in the cavity.

The transient nonlinear analyses were carried out using the Euler backward scheme
and for a total time of 1800 seconds (30 minutes). The time step is selected as a function
of the complexity of the problem. A time step of 20 s is set in the models (i) and (ii),
while 1 s is fixed in the models (iii) and (iv). The initial temperature was set at 24 ◦C,
which was the temperature measured at the beginning of the test.

Figure 7.10 shows the geometry of the cross section and the position of the thermo-
couples and table 7.3 summarizes their coordinates.

Figures 7.11, 7.12, 7.13 and 7.14 present comparative graphs depicting the experimental
and numerical temperatures in the position of the thermocouples, the latter having been
obtained with the models (i), (ii), (iii) and (iv), respectively. The numerical results are
presented until 1800 s (whenever possible), the duration of the experimental test.

Model (i) considers that the walls of the cavity are insulated and, consequently, the
heat transfer in the solid occurs exclusively by conduction. This fact explains the relatively
high numerical temperatures in the bottom flange and the relatively low temperatures in
the top flange, when compared with the experimental results. In fact, for these boundary
conditions, numerical temperatures in the top flange present very little variation during
the 1800 s. This result points out the importance of considering the heat exchanges be-
tween the walls that define the section cavity. Regarding the web, the numerical results
provide lower temperatures than those observed experimentally. The elevated tempera-
tures measured in the web can be due to an inefficient insulation of the lateral faces of
the profile in the experiments, this being impossible for the model to accurately reproduce
them.

Model (ii) considers that the faces of the cavity exchange heat by radiation. It can be
observed that the mathematical model is now able to reproduce better the temperature
distribution in the top flange, with a good agreement being obtained between the numerical
and experimental results. However, in the bottom flange the numerical temperatures are
significantly higher than the experimental ones. Furthermore, in the web the model still
underestimates the experimental temperature distribution. Overall, when compared with
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model (i), the model (ii) provides a better agreement between the numerical temperatures
and those measured in all thermocouples, especially in the bottom and top flanges.

Model (iii) takes into account that the air contained in the cavity transmits heat by
natural convection. Similarly to model (ii), this model is able to represent the temperature
evolution in the top flange, providing slightly higher numerical temperatures between 25
and 30 minutes compared with the experimental results. This fact can be due to the
consideration of the Boussinesq hypothesis, when it is only valid for reduced temperature
gradients. Consequently, for high temperatures the error induced by this hypothesis can
be relevant. In the bottom flange a worse estimation of the temperature distribution
compared with model (ii) is observed. In fact, the temperature distribution obtained in the
bottom flange is similar to that computed with model (i), the temperatures being slightly
lower in this case. In the lateral face, once again, the numerical results underestimate the
experimental data.

The previous results point out that the heat transfer in the bottom flange occurs mainly
by conduction, while the heating in the top face stems mostly from natural convection and
radiative heat exchange between the faces of the cavity walls.

Model (iv) assumes that both natural convection and radiative heat exchange occur
simultaneously in the cavity. In this model, the temperature distributions obtained in
the top flange are higher than those observed experimentally, but the overall tendency of
the numerical results is coherent with the experimental data. The numerical temperature
distribution in the bottom flange is closer to the experimental results and the tempera-
tures obtained with this model are lower than those obtained with the other models. In
the lateral face, again and due to the reasons already explained, the numerical results
underestimate the experimental data. Furthermore, convergence of the solution was only
obtained until 1161 s. In order to obtain the complete thermal response, very small time
steps are required. This aspect is discussed further in section 7.4.4.

The results also illustrate the high non linearity of the problem solved, where the
solution of the model (iv) cannot be calculated as the combination of the solutions in the
models (ii) and (iii).

Table 7.4 summarizes the CPU time required to complete the analyses of models (i) and
(ii) — using the mesh presented in figure 7.9a — with a time step of 20 s and a total time
of 3600 s (1 hour). Moreover, the same analyses, but using constant thermophysical
properties, were also performed and the respective required CPU time is included in the
table. During the numerical tests carried out, a significant increase of the CPU time
required in the computations was observed when the radiative heat exchange between
the faces of the cavity is considered (from 19 min to 841 min) and when the GFRP
thermal properties are temperature-dependent (from 19 min to 64 min). It can be observed
that when nonlinear material is considered simultaneously with radiative heat exchange
between the faces of the cavity, a CPU time increment from 19 min to 1647 min occurs.

In all models, the quadratic convergence of the algorithm in the asymptotic limit of
the solution was guaranteed due to the use of the Newton–Raphson method. This is an
important factor to reduce the computational time required to run the model. Figure 7.15
depicts the value of the dimensionless norm of the residual vector at each iteration in the
first six time steps in model (ii).

Overall, the most accurate model regarding the simulation of the temperature field
in the cross section was model (ii). However, this model is not realistic (as in the cavity
there is fluid and convective and radiative heat exchange between the walls is expected)
and could not represent accurately the experimental results obtained in the protected
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Figure 7.11: Temperature in the thermocou-
ples obtained with model (i).
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Figure 7.12: Temperature in the thermocou-
ples obtained with model (ii).
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(c) Bottom flange.

Figure 7.13: Temperature in the thermocou-
ples obtained with model (iii).

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Time, t (minutes)

T
em

p
er
at
u
re
,
θ
(◦
C
)

 

 
T3exp
T2exp
T1exp
T3num
T2num
T1num

(a) Top flange.

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Time, t (minutes)

T
em

p
er
at
u
re
,
θ
(◦
C
)

 

 
T6exp
T5exp
T4exp
T6num
T5num
T4num

(b) Web.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

Time, t (minutes)

T
em

p
er
at
u
re
,
θ
(◦
C
)

 

 

ISO834

T7exp

T7num

(c) Bottom flange.

Figure 7.14: Temperature in the thermocou-
ples obtained with model (iv).
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Thermophysical properties Boundary conditions in the cavity CPU time (min)

Constant Adiabatic 19
Radiative heat flux 841

Nonlinear Adiabatic 64
Radiative heat flux 1647

Table 7.4: Computational CPU time for different models.
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Figure 7.15: Convergence at the first six time steps in model (ii).

tubular profile with the bottom face subjected to fire (see appendix G). Consequently,
model (iv) was considered more appropriate for the numerical simulations presented in
the following.

7.4.3 Spatial discretization

The present section reports a study about the spatial discretization of the unprotected
tubular cross section. This analysis was performed to assess if the results obtained can be
considered independent of the mesh employed, i.e., if spatial the discretization error tends
to zero with the grid refinement.

In the numerical tests carried out, the boundary conditions defined in model (iv) were
considered. The thermal properties of the GFRP are those suggested by Tracy (2005), con-
sidering a linear variation of the emissivity with the temperature. The transient nonlinear
simulations were carried out using the Euler backward scheme, a total time of 1800 seconds
(30 minutes) and a constant time step equal to 1 second.

Four non-regular meshes were tested, which are depicted in figure 7.16. All meshes are
formed with 9-nodes quadrilateral elements in the solid, Q2Q1 elements in the fluid and
one-dimensional quadratic radiosity elements. In terms of total nodes and elements, mesh
1 (the coarsest) has 1449 nodes and 364 elements, mesh 2 has 3409 nodes and 864 elements,
mesh 3 contains 7465 nodes and 1784 elements, and mesh 4 (the most refined) has 13089



7.4. Thermal modelling of the tubular profile exposed to fire in 1-face 163

Meshes properties Mesh 1 Mesh 2 Mesh 3 Mesh 4
Number of elements in the solid 224 384 864 1536
Number of elements in the fluid 100 400 900 1600
Number of radiosity elements 40 80 120 160

Total number of elements 364 864 1784 3296
Total number of nodes 1449 3409 7465 13089

Table 7.5: Number of nodes and elements in the meshes considered for the spatial dis-
cretization study.

Compared meshes T1 T2 T3 T4 T5 T6 T7
Mesh 2 0.947 2.789 0.468 0.487 0.458 0.223 0.244
Mesh 3 (2.4%) (6.4%) (0.9%) (1.4%) (1.3%) (0.5%) (0.1%)
Mesh 2 1.012 1.191 0.411 0.521 0.471 1.925 0.296
Mesh 4 (2.6%) (2.6%) (0.8%) (1.5%) (1.4%) (4.2%) (0.1%)
Mesh 3 0.065 1.598 0.057 0.034 0.013 2.148 0.052
Mesh 4 (0.2%) (3.5%) (0.1%) (0.1%) (0.04%) (4.7%) (0.02%)

Table 7.6: Difference between the temperatures in the thermocouples at t = 500 s.

nodes and 3296 elements. Table 7.5 summarizes the number of nodes and elements in the
different meshes.

Figure 7.17 illustrates the evolution of numerical temperatures in the thermocouples
locations obtained with the different meshes.

It can be observed that the temperature evolution obtained with the different meshes
is similar, the main difference being the last computational time converged (marked with
an × in the graphics). The last converged time of mesh 1 is 155 s, probably because the
mesh is too coarse to represent correctly the fluid flow in the cavity. Hence, this mesh
was discarded. Regarding meshes 2, 3 and 4, the last converged time is 1058 s, 630 s
and 504 s, respectively. In order to evaluate the difference of the temperature in the
thermocouples computed using these different meshes, a common computational time of
500 s (8.3 minutes) was selected. Table 7.6 summarizes the absolute difference between the
temperatures in the thermocouples computed with those meshes. The maximum difference
between meshes 2 and 3 occurs in thermocouple T2, while the maximum difference between
meshes 2 and 4 occurs in thermocouple T6. The values in parentheses represent the
percentage difference regarding the finest mesh.

The difference in the final converged computational time between the meshes 2, 3 and
4 is associated to the time step size required. Refined meshes require, in general, smaller
times steps than coarser meshes for the calculation of a converged solution.

Figure 7.18 illustrates the velocity and temperature fields computed with mesh 2 at
different times (250, 500, 1000 and 1058 s). It can be observed that at t = 1058 s small
convective cells appear in the bottom corners of the cross section.

Figure 7.18g shows the formation of multiple vortex in the vicinity of the bottom face
of the cavity that reduce the dimensions of the Bénard cells and separate them from the
bottom face. Figure 7.18h depicts the formation of multiples plumes, which can be induced
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(a) Mesh 1.
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(b) Mesh 2.
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(c) Mesh 3.
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(d) Mesh 4.

Figure 7.16: Meshes designed for spatial discretization study.

due to the effect of the radiative heat exchange between the cavity faces. A similar effect
was experimentally observed and referred in the works of, for example, Sparrow et al.
(1970) and Solomon and Gollub (1990). This effect is also observable in the numerical
results computed using the meshes 3 and 4.

Due to the complexity of the problem and the objective of the analysis (to reproduce
the temperature distribution in the thermocouples), it was considered that the relative
differences obtained in the temperatures for meshes 2 to 4 were acceptable and, conse-
quently, mesh 2 was adopted for the thermal modelling of the tubular GFRP profiles, as
the computational time required to compute one time step is lower than the time required
for the refined mesh 4.

In order to guarantee that the spatial discretization error tends to zero in all the cases
analysed in section 7.5, the spatial discretization study was extended for the unprotected
tubular cross section exposed to fire in 3-faces. The geometry of the cross section studied
and the thermocouples location are depicted in figure 7.19. Table 7.7 provides the position
of the thermocouples.

In the faces exposed to fire (bottom face and 3/4 of the lateral faces), convective
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Figure 7.17: Comparative graphics of the temperature evolution in the thermocouples
position obtained using different meshes.
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(a) Resultant velocity field, t = 250 s. (b) Temperature field, t = 250 s.

(c) Resultant velocity field, t = 500 s. (d) Temperature field, t = 500 s.

(e) Resultant velocity field, t = 1000 s. (f) Temperature field, t = 1000 s.

(g) Resultant velocity field, t = 1058 s. (h) Temperature field, t = 1058 s.

Figure 7.18: Velocity resultant and temperature field at different instants.
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Figure 7.19: Cross section geometry and ther-
mocouples distribution of the GFRP tubular
cross section exposed to fire in 3-faces (in me-
ters).

Table 7.7: Thermocouples position
in the GFRP tubular cross section
for 3-faces fire exposure.

and radiative heat flux were prescribed, with the exterior temperature varying with time
according to the nominal curve reported in the ISO 834 (1975) standard. The top 2.5 cm of
the lateral faces were considered insulated, as in the experiment. In the top face, convective
and radiative heat flux were considered, the ambient temperature being equal to 20 ◦C.
In the cavity, natural convection and radiative heat exchange were applied. Figure 7.20
illustrates the boundary conditions defined in the model.

q = 0q = 0

x2

x1

v = o

θ|s = θ|f

convective and radiative flux

convective and radiative flux
θa = 20

θa = θISO

radiative heat
exchange

Figure 7.20: Unprotected tubular profile partially exposed to fire in 3-faces.

Numerical simulations were carried out considering the meshes 2, 3 and 4 depicted
in figure 7.16. Figure 7.21 represents the temperature evolution in the thermocouples
obtained with the three meshes.

It can be seen that the temperature in the thermocouples obtained with all the meshes
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Figure 7.21: Temperature evolution in the thermocouples position obtained using different
meshes in a tubular cross section partially subjected to fire in 3-faces.
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is almost coincident, the maximum differences being obtained in the thermocouples situ-
ated in the top flange and in the thermocouple T4. The radiative heat exchange between
the faces of the cavity depends on the mesh, as in refined meshes more Gauss points
are considered for the evaluation of the geometrical terms given by equation (3.57) and
the convergence of the radiosity equation is slower. Consequently, in the thermocouples
where the heat transfer is mainly by conduction (all thermocouples in the bottom face
and thermocouples T5 and T6 in the lateral face) the temperature values computed with
the different meshes are similar, while some differences can be found in the thermocouples
that are more dependent on the natural convective heat flux and radiative heat exchange
(all thermocouples in the top flange and thermocouple T4 in the lateral face). The differ-
ence in the last converged solution is associated to the time step size required to obtain a
converged solution. The time step size needed depends on the mesh size. This is further
discussed in the following section.

7.4.4 Temporal discretization

This section reports a study about the dependency of the numerical results on the time
step size. Nonlinear transient analyses using mesh 2 and the Euler backward scheme, in
order to guarantee an unconditionally stable algorithm, are performed by defining different
time step values.

In these calculations, the GFRP conductivity and specific heat capacity were consid-
ered temperature-dependent according to the model of Bai et al. (2007). The density was
also temperature-dependent, while the emissivity was set as constant and equal to 0.7.
Three constant time steps of 1, 5 and 10 seconds were considered. Figure 7.22 illustrates
the temperature evolution in the thermocouples locations, using the different time steps.

For the time steps of 1 and 5 seconds, the last computational time for which a converged
solution is attained is similar (1421 and 1400 s, respectively), while for the time step of
10 seconds, it was significantly different and lower (740 s). After those instants, the
temperature and velocity variation in the fluid is too elevated and, consequently, a smaller
time step size is required in order to obtain a converged solution.

The Courant number is a dimensionless number that relates the temporal and spa-
tial discretization. The elemental Courant number in a two-dimensional domain can be
calculated as,

Cu(e) =
(
v

(e)
1

∆x1
+ v

(e)
2

∆x2

)
∆t (7.2)

where Cu(e) is the Courant number in a generic element (e), v(e)
1 and v(e)

2 are the velocities
along the axes x1 and x2, ∆x1 and ∆x2 are the two main dimensions of the element and
∆t is the time step size.

In general, low Courant numbers are required to solve highly nonlinear problems,
decreasing the oscillations and improving the accuracy of the solution. When using explicit
methods, the Courant number must be lower than 1 for stability reasons, but when using
implicit methods, higher Courant number maybe adopted, depending on the complexity
of the problem (FLUENT, 2016). This topic is further developed in appendix F.

By comparing the temperature evolution in the thermocouples until 740 s (last common
time), no significant differences can be observed. Hence, the time discretization error can
be considered negligible for the selected time steps.
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Figure 7.22: Temperature evolution in the
thermocouples position obtained using differ-
ent constant time steps.
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Figure 7.23: Temperature evolution in the
thermocouples position obtained using mesh
2 and mesh 2r.
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(b) Mesh 2r.

Figure 7.24: Meshes designed for spatial discretization study.

In order to avoid convergence problems due to the time step size, the adaptive time
step scheme presented in section 5.3.3 must be employed. However, very reduced time
step sizes are needed to obtain the complete thermal response of the cross section. This
fact implies an elevated CPU time and, consequently, an optimized algorithm should
be implemented1 to perform the analysis until 3600 s. In the following GFRP thermal
simulations a constant time step of 1 second is employed.

7.4.5 Modelling of the cavity geometry

The real GFRP cross section consists of a square tube with 3 mm radius round corners
in the cavity. In order to simplify the geometry of the cross section, these corners were
considered sharp. However, this modification of the geometry introduces four points where
the radiosity field is singular. This may cause convergence problems and provide incorrect
temperature fields in the vicinity of the singularity. In order to evaluate the consequences
of the simplification of the cavity geometry, a mesh equivalent to mesh 2 (in terms of
total number of nodes, elements and spatial distribution of the elements) was generated,
but with rounded corners, mesh 2r. Figure 7.24 illustrates both meshes compared in this
analysis.

The GFRP conductivity and specific heat capacity were computed using the model
of Tracy (2005) and both density and emissivity were considered temperature-dependent.
Figure 7.23 illustrates the temperature evolution in the thermocouples obtained with both
meshes. It can be observed that only slight differences in the thermocouples positioned in
the top flange are observable, which are considered acceptable (sufficiently low).

However, the consideration of the circular corners in the cavity introduces a variation
in the flow of the air inside the cavity, potentiating the formation of vortex in the vicinity of

1Recently, Paipuri (2016) implemented the thermal FE formulation presented here in FORTRAN. The
complete thermal response of the unprotected beam exposed to fire in 1-face was obtained by using the
adaptive time step algorithm reported in section 5.3.3. Depending on the complexity of the calculation, at
certain instants, time steps of 0.01 s or even lower were required. The results obtained can be consulted
in appendix F.
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the bottom face and, using a 1 second constant time step, the last time where a converged
solution is computed is lower than in the mesh 2.

Considering that the objective of the numerical study is to simulate the temperature
evolution in the thermocouples and that, with both meshes, the results are similar and
the results of mesh 2 seem not to be affected by the singularities, mesh 2 was chosen to
carry out the thermal simulations of the tubular GFRP profiles.

7.4.6 Discussion about the thermophysical properties of the GFRP

In section 7.3, three analytical models to evaluate the temperature-dependent ther-
mal conductivity and specific heat capacity of the GFRP material were presented. In
the current section, numerical simulations carried out with the different GFRP thermal
properties are reported, in order to determine which model is able to simulate better the
experimental results. Therefore, three nonlinear transient analyses of the tubular GFRP
profiles were carried out considering the thermal conductivity and specific heat capacity
computed with the models proposed by Samanta et al. (2004), Tracy (2005) and Bai et al.
(2007).

The numerical simulations were performed using mesh 2. A fully implicit analysis with
a time step equal to 1 second was carried out in all models.

Figure 7.14 (page 161) illustrates the numerical results obtained considering the model
of Tracy (2005) and a constant emissivity. Figures 7.25 and 7.26 depict the experimental
and numerical temperatures, the latter computed using the thermal properties suggested
by Samanta et al. (2004) and Bai et al. (2007), respectively.

The model of Samanta et al. (2004) overestimates the temperatures in the bottom
and top flanges, while in the web the temperatures are underestimated. Furthermore,
this model only allows obtaining a converged solution until t = 521 s, due to the high
temperature gradient in the cavity.

Both Tracy’s and Bai’s models provide more accurate results in the bottom flange,
compared with Samanta’s model. The temperatures in the web are in both cases un-
derestimated, even if Bai’s model is slightly more accurate. The numerical temperatures
evolution in the top flange provided by both models are higher than the experimental
ones, with Tracy’s model leading to more accurate results. The last converged times were
1160 s and 1421 s for the Tracy’s and Bai’s models, respectively.

In the previous results the emissivity was set constant and equal to 0.7, which cor-
responds to the recommendation of the Eurocode 1 (1995) when the emissivity of the
material is unknown. However, further simulations were carried out using Tracy’s and
Bai’s models and considering that the emissivity is temperature-dependent (Samanta et al.,
2004). Figures 7.27 and 7.28 depict the temperature results obtained in the thermocouples
under these assumptions.

The results obtained with constant emissivity and temperature-dependent emissivity
are roughly similar. In general terms, when the emissivity is set as temperature-dependent,
higher numerical temperatures are obtained in the web and top flange, while lower tem-
peratures are obtained in the bottom flange. Regarding the last computational time for
which a converged solution is attained, they were 1282 s for the Bai’s model and 1058 s
for the Tracy’s model, both with temperature-dependent emissivity.

Based on the results reported above, it was considered that the best model to eval-
uate the thermal properties of the GFRP is that of Tracy with temperature-dependent
emissivity. This was the model used in the thermal simulations presented in the following.
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(c) Bottom flange.

Figure 7.25: Temperature profiles obtained
considering the GFRP properties of Samanta
et al. (2004).
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Figure 7.26: Temperature profiles obtained
considering the GFRP properties of Bai et al.
(2007).
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Figure 7.27: Temperature profiles with Bai’s
model (temperature-dependent emissivity).
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Figure 7.28: Temperature profiles with Tracy’s
model (temperature-dependent emissivity).
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7.4.7 Conclusions regarding the characteristics of the thermal
simulations

The current section reports results of preliminary studies about: (i) the boundary
conditions to consider in the thermal modelling of the GFRP tubular profiles, (ii) the
spatial and temporal discretization, (iii) the effect of sharp corners in the cavity, and
(iv) the temperature-dependent thermal conductivity, specific heat capacity and emissivity
of the GFRP material.

Regarding the boundary conditions of the model, four situations were tested and the
numerical results obtained were compared with the experimental data. The model that
reproduced more accurately the experimental temperature distribution was the one that
considers simultaneously the radiative heat exchange between the faces of the cavity and
the natural convection. Both phenomena proved to be very important in order to repro-
duce the temperature field in the top flange. However, as the temperature gradients on
the cavity walls are high, this model requires small time step sizes after the last converged
time. In spite of that, this was the model chosen to compute the numerical distribution
of the temperatures in the tubular and I-section GFRP profiles, as it was the one that
simulated more faithfully the actual test conditions. In all models, the convective heat
coefficient was modelled as linearly dependent on the temperature.

A systematic study about the spatial and temporal discretization was also carried out in
order to evaluate the accuracy and robustness of the solution. In the spatial discretization
study of the unprotected tubular cross section exposed to fire in 1-face, four meshes were
tested. The mesh referred to as mesh 2 was chosen for the following numerical simulations.
In the case of the unprotected tubular cross section exposed to fire in 3-faces, three meshes
were considered. The temperature evolution in the thermocouples is similar in all meshes,
being possible to conclude that the spatial discretization error can be neglected. Due to
the objective of this analysis (to compare experimental and numerical results) and to the
elevated computational time required to obtain the thermal response of the cross section,
mesh 2 was considered more appropriate and, therefore, it was used in the final simulations
presented in section 7.5.3.

In the temporal discretization study, three constant time steps were tested. All of
them presented almost identical results, the only difference being the last time for which
a converged solution was obtained. The convergence problems of the algorithm are asso-
ciated to the time step size. When the complexity of the problem increases, small time
step sizes are required to compute a converged solution. Therefore, the adaptive time
step implemented should be used to obtain the complete response. This implies long CPU
times and, finally, a time step of 1 second was selected to perform the thermal simulations
in the tubular and I-section profiles.

Regarding the thermal properties of the GFRP, the density is considered dependent
on the temperature and the values assumed were those obtained experimentally. The
thermal conductivity and the specific heat capacity were computed using three analyti-
cal models (Samanta et al., 2004, Tracy, 2005, Bai et al., 2007) and the emissivity was
considered constant and temperature-dependent (Samanta et al., 2004). The analytical
model that represented with more accuracy the experimental results was that with the
thermal conductivity and the specific heat capacity computed with the Tracy’s model and
temperature-dependent emissivity for all temperatures.



176 Thermomechanical simulations in GFRP beams and columns

7.5 Simulations of the thermal behaviour of the profiles

7.5.1 Preliminary comments

In the present section, the thermal simulations of the different profiles subjected to fire
are presented. The numerical results allow evaluating the thermal response of the cross
section and assessing the fluid flow in the cavities of the profiles, which depends strongly
on the fire exposure. The obtained numerical results are compared with the experimental
data (temperature evolution in the thermocouples obtained during the beam tests) in
order to evaluate the accuracy of the model in reproducing them.

The following six numerical simulations were carried out:

1. Unprotected tubular cross section with 1-face exposed to fire (section 7.5.2).

2. Unprotected tubular cross section with 3-faces (both lateral faces and bottom face)
exposed to fire (section 7.5.3).

3. CS protected tubular cross section with 1-face exposed to fire (section 7.5.4).

4. CS protected tubular cross section with 3-faces exposed to fire (section 7.5.5).

5. Unprotected I-section with 3-faces exposed to fire (section 7.5.6).

6. Protected I-section with 3-faces exposed to fire (section 7.5.7).

In all cases, transient nonlinear finite element simulations were carried out using the
Euler backward scheme and considering the stabilization SUPG. The thermal properties
of the GFRP and CS were considered temperature-dependent. The particularities of each
analysis will be detailed in the corresponding section.

7.5.2 Unprotected tubular section with 1-face fire exposure

An unprotected tubular cross section subjected to fire exposure in the bottom face is
considered (beams and columns from series S1 and S3, see tables 7.1 and 7.2). The geom-
etry of the cross section and the position of the thermocouples are depicted in figure 7.10
and summarized in table 7.3. Regarding the installation of thermocouple T7, it was placed
throughout a horizontal hole. This fact is important, as in previous tests performed on
unprotected tubular sections (Correia, 2008), thermocouples were placed in the bottom
flange throughout vertical holes drilled either from the top or the bottom and, in both
situations, inconsistent temperatures were measured. It is possible that those tempera-
ture measurements may have been influenced by the air in the vicinity of the hole. This
fact probably is also applicable to the thermocouples in the top face, which should have
been placed through horizontal holes. However, in this case given the lower temperature
differences between the GFRP material and the air, it is likely that this aspect was less
relevant.

The numerical transient analysis was carried out with a time step size of 1 second and
using the mesh referred as mesh 2 (see figure 7.24a). The boundary conditions defined are
those schematically represented in figure 7.8d.

The numerical and experimental temperature evolution in the thermocouples are showed
in figure 7.29.

These results are similar to those displayed in figure 7.28, except that in figure 7.29b
the temperatures at thermocouples T6 and T5 are not plotted as there are concerns
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Figure 7.29: Experimental and numerical
temperatures in the unprotected tubular
cross section with 1-face exposure.
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Figure 7.30: Experimental and numerical
temperatures in the unprotected tubular
cross section with 3-faces exposure.
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regarding the accuracy of the experimental results. In fact, the experimental temperatures
in those thermocouples are much higher than those observed numerically. As mentioned,
one possible reason is the inefficient lateral insulation of the profile during the test, which
allowed for some heat flux on the bottom of the lateral faces (that is not quantified in the
numerical simulations). Consequently, an increase of the temperatures measured in the
thermocouples installed on the lateral face could be observed, especially those closer to
the bottom face.

Regarding the temperatures measured in the top flange, the thermocouples were not
installed laterally (as T7) and this may explain why the temperatures measured are lower
than the numerical temperatures.

Recently, Paipuri (2016) computed the complete thermal response of the GFRP profile,
which can be consulted in appendix F.

7.5.3 Unprotected tubular section with 3-faces partially exposed to fire

In this section, the thermal behaviour of a GFRP tubular profile with 3-faces partially
subjected to fire (the bottom face and 3/4 of the lateral faces) is analysed. Figure 7.19
illustrates the geometry of the cross section and the position of the thermocouples, which
is also summarized in table 7.7.

Regarding the boundary conditions, convective and radiative heat flux is prescribed in
the top face, the ambient temperature being equal to 20 ◦C, and natural convection and
radiative heat exchange is considered in the cavity. The bottom and both lateral faces
are exposed to fire and, consequently, convective and radiative heat flux are prescribed;
in this case, the exterior temperature varies with time according to the ISO 834 (1975)
curve. The boundary conditions defined are schematically presented in figure 7.20. The
numerical simulation was carried out using the mesh presented in figure 7.16d and using
a time step of 1 second. Figure 7.30 depicts the numerical and experimental temperature
evolution in the thermocouples until t = 8 min, which was the duration of the test in the
beams.

The numerical temperatures are, in all thermocouples, higher than the experimental
counterparts. In the bottom face, the temperature evolution of the thermocouples T9,
T10 and T11 is well reproduced by the model. However, the temperature computed in
thermocouple T12 is higher than the experimental one. In the web, the temperature
evolution of thermocouples T4, T7 and T8 is also well represented by the model. In both
numerical and experimental results, the temperatures in thermocouples T5 and T6 are
similar. The temperatures evaluated in thermocouples T5, T6 and T8 are higher than
the experimental ones, the maximum difference being obtained at 178 s, which is the last
instant for which a converged solution was attained. In the top face, the model is able
to represent the temperatures measured in the tests with reasonable accuracy. In both
numerical and experimental data, the temperature in these thermocouples remain almost
constant until 120 s and, after this instant, the temperatures increase. This effect is also
registered numerically.

It can be observed that converged temperatures were only obtained until 178 s, and
this is attributed to the time step size employed. Figure 7.31 shows that four convective
cells appear due to the temperature gradient created in the lateral walls. Hence, two zones
are created: a cold zone situated in the top of the cavity and a warm zone situated in the
bottom. The existence of these four convective cells and the discontinuity in the boundary
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(a) Temperature field. (b) Resultant velocity field.

(c) Streamlines. (d) Velocity field.

Figure 7.31: Results for tubular profile exposed to fire in 3-faces (lateral faces partially
exposed to fire, at t = 100 s).

conditions in the lateral faces hamper the convergence to the solution, which, most likely
would require a very small time step size.

7.5.4 Protected tubular section with 1-face fire exposure

The thermal response of a tubular GFRP profile whose bottom face is protected with
a 25 mm CS board is analysed. The geometry of the cross section and the position of the
thermocouples is represented in figure 7.32. Table 7.8 summarizes the coordinates of the
eleven thermocouples used in the experimental test.

The boundary conditions defined in the model are represented schematically in fig-
ure 7.33 and can be summarized as follows:

1. Top face: convective and radiative heat flux, with the ambient temperature being
constant and equal to 20 ◦C.

2. Bottom face of the CS board: convective and radiative heat flux considering a vari-
able ambient temperature following the ISO 834 (1975) curve.

3. Lateral faces: insulated.

4. Cavity faces: natural heat convection and radiative heat exchange.
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Figure 7.32: Geometry and thermocouples
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Table 7.8: Coordinates of the thermo-
couples installed in the protected tubular
GFRP cross section with 1-face exposed
to fire.
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Figure 7.33: Boundary conditions in the
protected tubular profile exposed to fire
in the bottom face.

Figure 7.34: Mesh used in the modelling
of the protected tubular profile exposed to
fire in the bottom face.

Figure 7.34 shows the mesh used in the numerical simulation, which contains 896
quadrilateral elements (400 Q2P1 elements in the fluid and 496 in the solid) and 3865
nodes. In addition, the heat transfer by convection and radiation with the ambient in the
bottom and top faces of the cross section were imposed along 56 sides of solid quadrilateral
elements and 80 one-dimensional radiosity elements were used to account the radiative heat
exchanges on the cavity walls.

A transient nonlinear simulation was carried out using a time step of 1 second until a
total time of 1461 s. Figure 7.35 illustrates the numerical and experimental temperatures
in the thermocouples.
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Figure 7.35: Experimental and numerical
temperatures in the protected tubular cross
section with 1-face exposure.
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Figure 7.36: Experimental and numerical
temperatures in the protected tubular cross
section with 3-faces exposure.
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The agreement between the numerical and experimental temperatures in the thermo-
couples T1, T2 and T3 located in the top face is very good. In the web, three thermocou-
ples were installed, but only the results of thermocouple T4 are presented (similarly to the
unprotected profile, there were concerns regarding the efficiency of the thermal insulation
of the lateral faces during the experimental test). In opposition to the thermocouples
T5 and T6, the temperature evolution in T4 obtained numerically is coherent with the
experimental measurements, with the differences between computed and measured tem-
peratures being attributed to the inefficient insulation of the lateral faces, which could
have also affected thermocouple T4. The temperatures at the thermocouples installed in
the bottom face (i.e., T7, T8, T9, T10 and T11) were well predicted by the model. The
main difference between the numerical and the experimental results occurs between 10
and 20 minutes. During this period, the experimental temperatures exhibit a variation in
their slope, probably due to the dehydration reaction in the CS. However, this reaction
does not seem to be considered in the heat transfer capacity curved provided by the man-
ufacturer (cf. figure 7.7, page 155), where a steep increase of the cp value should occur at
around 100◦C (endothermic water evaporation). This is probably why the model is not
able to reproduce the mentioned slope variation in the temperatures. This effect will be
present in all the simulations carried out in CS protected profiles. Specific thermo-physical
experiments should be performed to confirm or update the data provided by the material
supplier.

A converged solution was obtained until t = 1461 s, this value being lower than the
maximum duration of the experimental tests (almost 3600 s in both the beam and the
column). A model considering only radiative heat exchange in the cavity was also de-
veloped and, in this case, it was possible to obtain a converged solution for a duration
similar to that of the tests. These results complete the analysis presented in section 7.4.2,
confirming the need to consider not only the radiative heat flux between the faces of the
cavity, but also the natural convection of the enclosed air. The temperature evolution in
the thermocouples obtained in this analysis is presented in the appendix G to keep the
clarity of the text. The results presented corroborate that the model proposed is able to
simulate the temperature of the GFRP tubular cross section.

7.5.5 Protected tubular section with 3-faces partially exposed to fire

A nonlinear transient simulation of the thermal behaviour of a GFRP protected tubu-
lar profile partially exposed to fire in 3-faces (the bottom face and 3/4 of the lateral faces)
is presented. The cross section is protected with three CS boards, disposed as depicted in
figure 7.37, which also illustrates the cross section geometry. The position of the thermo-
couples is detailed in table 7.9.

The boundary conditions prescribed are presented in figure 7.38 and can be defined as
follows:

1. Top face: convective and radiative heat flux, with the ambient temperature being
constant and equal to 20 ◦C.

2. Bottom face of the CS board and lateral faces of the cross section (with exception
of the top 2.5 cm): convective and radiative heat flux considering that the ambient
temperature follows the ISO 834 (1975) curve.

3. Top 2.5 cm of the lateral faces: insulated.
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Figure 7.37: Geometry and thermocouples
position of the protected tubular cross sec-
tion exposed to fire partially in 3-faces (di-
mensions in meters).

Table 7.9: Thermocouples position in
the protected GFRP tubular cross sec-
tion for 3-faces partially exposed to fire.
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Figure 7.38: Boundary conditions in the
protected tubular profile partially exposed
to fire in 3-faces.

Figure 7.39: Mesh used in the modelling
of the protected tubular profile partially
exposed to fire in 3-faces.

The transient analysis was carried out considering the Euler backward scheme with a
time step equal to 1 s. A converged solution was obtained until 654 s, while the duration
of the experimental tests was around 3000 s for the beam and 2340 s for the column.

Figure 7.36 displays the temperature evolution in the thermocouples. It can be ob-
served that, until 654 s, the agreement between the numerical and experimental temper-
atures is reasonable. The most relevant differences are observed in the thermocouples
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Figure 7.40: Cross section geometry and ther-
mocouples on the GFRP I-section exposed to
fire in 3-faces (dimensions in meters).

Table 7.10: Thermocouples position
in the GFRP I-section with 3-faces
exposed to fire.

located in the web, with the numerical temperatures being lower than the experimen-
tal ones. These differences may be due to the already mentioned possible inaccuracy in
the modelling of the thermal properties of the CS (namely, the non consideration of the
dehydration reactions).

7.5.6 Unprotected I-section with 3-faces fire exposure

This section presents the thermal study of the I profile subjected to fire in 3-faces. The
dimensions of the profile and the position of the thermocouples are displayed in figure 7.40
and table 7.10 details the coordinates of the thermocouples.

The boundary conditions considered in the present analysis are illustrated in figure 7.41
and can be summarized as follows:

1. Top face: convective and radiative heat flux, with the ambient temperature being
constant and equal to 20 ◦C.

2. Lateral faces of the top flange: insulated.

3. Bottom and lateral faces of the bottom flange: convective and radiative heat flux,
considering an ambient temperature varying according to the ISO 834 (1975) curve.

4. Top face of the bottom flange, face of the web and bottom face of the top flange:
convective and radiative heat flux, and radiative heat exchange between faces.

In order to reduce the CPU time, only half of the cross section was modelled using
the mesh depicted in figure 7.42, which contains 112 9-nodes quadrilateral elements and
549 nodes. Furthermore, 65 element sides were also used to impose the convective and
radiative heat exchanges with the ambient. A total of 42 radiosity elements are used to
evaluate the radiative heat exchange between faces. Along the symmetry axis the normal
flux value is prescribed to be equal zero.

A nonlinear transient analysis was carried out considering a time step equal to 1 second
and the Euler backward scheme. The total duration of the analysis was 2.5 minutes, which
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Figure 7.41: Boundary conditions in the
unprotected I-profile partially exposed to
fire in 3-faces.

Figure 7.42: Mesh employed in the mod-
elling of the unprotected I-section par-
tially exposed to fire in 3-faces.

corresponds to the duration of the experimental beam test. Figure 7.43 illustrates the
evolution of the numerical and experimental temperatures in the thermocouples. It can
be observed that, overall, a reasonable agreement between the numerical and experimental
temperatures is obtained.

Regarding the temperatures in the top flange, the model provided higher temperatures
than those measured experimentally, the maximum difference occurring in thermocouples
T1 and T3. To some extent, these differences can be explained by the procedure used
to install the thermocouples, which could have been cooled due to the exposure to the
ambient air.

In both the web and the bottom face, the numerical temperatures were lower than
the experimental counterparts. This fact could be due to the very short duration of the
tests (beam and column). In fact, during the first minutes of the fire resistance tests,
the accurate imposition of the ISO 834 (1975) curve is generally difficult even in furnaces
with gas burners such as the one used in the experiments. Particularly in these tests, it
was observed that for such period the temperature in the furnace was below the nominal
temperature of ISO 834 (1975), as illustrated in figure 7.45.

In the web, the numerical temperatures in thermocouples T4, T5 and T6 is almost iden-
tical. Consequently, in the numerical simulations, the temperature distribution along the
vertical direction of the web is uniform. This is coherent with the temperatures observed
experimentally, which are only slightly different from the numerical ones. The maximum
difference between the numerical and the experimental results occurs in thermocouple T4
at approximately t = 2 minutes. At the end of the 2.5 minutes, the numerical results are
similar to the experimental ones.

In the bottom face, the numerical results are consistent with the experimental ones.
Thermocouple T7 is not presented as there were concerns regarding the validity of the
temperature measured.

Figure 7.46 illustrates the temperature and the heat fluxes at each direction at the end
of the test (2.5 minutes). It can be observed that the maximum heat flux occurs in the
direction perpendicular to the faces exposed to fire. The flux computed in both directions
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(c) Bottom flange.

Figure 7.43: Experimental and numerical
temperatures in the unprotected I-section
with 3-faces exposure.
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Figure 7.44: Experimental and numerical
temperatures in the protected I-section with
3-faces exposure.
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Figure 7.45: Experimental and numerical evolution of the temperature in the furnace.

is nearly continuous, confirming that the mesh used to solve the problem is adequate.

7.5.7 Protected I-section partially exposed to fire in 3-faces

The thermal response of the protected I-profile subjected to fire partially in 3-faces is
reported in this section. Figure 7.47 illustrates the geometry of the cross section and the
position of the thermocouples, which is also summarized in table 7.11.

A transient nonlinear analysis was carried out considering a time step of 1 second and
the Euler backward scheme. The boundary conditions and the mesh are illustrated in
figures 7.48 and 7.49, respectively. The mesh contains 2016 elements (832 Q2P1 elements
in the fluid and 1184 quadrilateral elements in the solid) and a total of 8537 nodes. Fur-
thermore, 109 element sides were employed to prescribe the radiative and convective heat
fluxes and 136 one-dimensional radiosity elements to take into account the radiative heat
exchanges between the cavity walls.

Figure 7.44 depicts the numerical and experimental temperature evolution in the ther-
mocouples. Regarding the thermocouples located in the bottom face and in the web, the
following comments are prompted: (i) the numerical results are lower than the experi-
mental ones until approximately 21-23 minutes; (ii) after this instant, the numerical tem-
peratures become higher than the measured ones; and (iii) furthermore, at approximately
100 ◦C, the experimental temperatures’ slope is significantly reduced (the temperatures
almost become constant for a certain duration), while the numerical ones continue increas-
ing (even if in the thermocouples located in the web, a slight variation in the slope can
be observed at 17 min). This relative difference was observed in all the simulations that
involve CS protection and, as discussed previously, it is very likely that the model was
not able to reproduce this effect due to the thermal properties of the CS material used as
input (provided by the material supplier).

Regarding the temperature evolution of the thermocouples located in the top flange,
the experimental results obtained in the beam test were considered inconsistent (it is very
likely that the lateral insulation used in this test was not effective). Therefore, it was



188 Thermomechanical simulations in GFRP beams and columns

(a) Temperature field, t = 150 s.

(b) Horizontal heat flux, t = 150 s. (c) Vertical heat flux, t = 150 s.

Figure 7.46: Temperature field and heat fluxes in the unprotected I-profile subjected to
fire in 3-faces.

decided to compare the numerical results with those obtained in the test of the column.
Figure 7.50 illustrates such comparison. The experimental results obtained in the top
flange during the column test (considered more realistic than those obtained in the beam,
as they are coherent with the progression of the temperatures in the top flange and web)
are in much better agreement with the results until the last solution converged.

The FE code implemented allowed obtaining a converged solution until 1737 s. Fig-
ure 7.51 displays the resultant velocity and temperature field at 200 and 1000 seconds.
These images illustrate the complex development of the fluid flow, which initially presents
one principal clockwise convective cell with a small convective cell in the left top corner
of the cavity. At 1000 s, the small convective cell grow up displacing the principal cell
and creating other convective cells in the right top corner of the cavity. Regarding the
temperature field, in the mentioned instant, two areas can be clearly identified: (i) in the
top of the cavity there exists cold air, while (ii) the warmer air is located in the bottom
of the cavity.

7.5.8 Concluding remarks

The current section presented numerical simulations carried out in unprotected and
protected GFRP tubular and I-section profiles subjected to different fire exposures.
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Figure 7.47: Cross section geometry and ther-
mocouples in the protected GFRP I-profile par-
tially exposed to fire in 3-faces (dimensions in
meters).

Table 7.11: Thermocouples position
in the protected GFRP I-section for
3-faces partially exposed to fire.
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Figure 7.48: Boundary conditions in the pro-
tected I-profile partially exposed to fire in 3-
faces.

Figure 7.49: Mesh employed in the
modelling of the protected I-section
partially exposed to fire in 3-faces.

The studies carried out illustrate the different fluid flow patterns that are developed
in the cavities of the cross sections. Hence, the code developed and the numerical simula-
tions performed allowed understanding the physical phenomena that occur in the enclosed
cavities.

In general, the numerical temperatures obtained were coherent with those measured
experimentally, highlighting the necessity to consider both natural convection and ra-
diative heat exchange in the cavities of the cross sections. The differences between the
numerical and experimental results can be caused by (i) the difficulties encountered in the
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Figure 7.50: Experimental and numerical evolution of the temperature in the top flange
of the protected I-profile partially exposed to fire in 3-faces (the experimental results were
measured during the experimental test of the column).

experiments in accurately positioning the thermocouples and obtaining reliable measure-
ments in some cross sections and (ii) the thermal properties assumed for the materials,
which may present some differences compared to the actual properties of the materials
used in the tests. This latter fact was especially relevant during the simulations of the
protected profiles, where it was observed that the temperatures computed present different
slopes when compared with the experimental data. In particular, it was verified that the
increase of the specific heat capacity of the CS at 100 ◦C due to the evaporation of the
water (typical in this type of fire protection materials) is not considered in the properties
provided for the manufacturer.

Furthermore, the numerical results reveal convergence issues of the code, whose origin
is the use of a constant time step.

Table 7.12 summarizes the last instant in which convergence was obtained in the ther-
mal simulations and the total time required in order to reproduce completely the ex-
periments in the beams and the columns. The percentages of the experimental results
reproduced numerically are presented in parentheses. The average percentage of simula-
tion completion among all situations tested is 62.1%. The results obtained in this study
suggest that such percentage may only be increased by using the adaptive time step algo-
rithm, that will reduce the time step size until convergence of the solution is possible. This
calculations implies long computational times, which are not practically feasible using the
FE code developed.

7.6 Mechanical modelling of beams and columns

7.6.1 Outline of the section

This section presents studies about the thermomechanical modelling of GFRP beams
and columns. In particular, the three following aspects are addressed:
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(a) Velocity field, t = 200 s. (b) Temperature field, t = 200 s.

(c) Velocity field, t = 1000 s. (d) Temperature field, t = 1000 s.

Figure 7.51: Resultant velocity and temperature field obtained at different computational
times, when the lateral faces are partially exposed to fire (protected I-section, 3-faces
exposure).

Cross section Numerical
tests

Beam
(load 1)

Beam
(load 2)

Column
(load 1)

Column
(load 2)

Unprotected tubular profile
(1-face exposure)

1050 2100
(50%)

1860
(56.5%)

965
(100%)

600
(100%)

Unprotected tubular profile
(3-face exposure)

178 480
(37%)

— 360
(49.4%)

—

Protected tubular profile
(1-face exposure)

1461 4980
(29.3%)

3960
(36.9%)

3060
(47.7%)

2220
(65.8%)

Protected tubular profile
(3-face exposure)

654 2760
(23.7%)

— 2340
(27.9%)

—

Unprotected I-profile
(3-face exposure)

240 148
(100%)

— 180
(100%)

—

Protected I-profile
(3-face exposure)

1737 1620
(100%)

— 2520
(68.9%)

—

Table 7.12: Experimental and numerical times computed (in seconds).



192 Thermomechanical simulations in GFRP beams and columns

1. Evaluation of the temperature-dependent mechanical properties of the GFRP using
the experimental data obtained within the Fire-FRP research project and other
values reported in the literature and the description of the CS mechanical properties.

2. Study about the spatial discretization of the bars’ length.

3. Influence of the unheated sections of the bars in the vertical displacement field
(in the experiments, part of the bar’s length was located outside the furnace and,
consequently, it remained colder than the central sections).

7.6.2 Discussion about the temperature-dependent mechanical
properties of the materials

GFRP material

In order to use the thermomechanical model described in chapter 6, the constitutive
relations (stress-strain and shear stress-distortion curves) for the GFRP had to be defined
at each temperature. The values considered are based on the experimental results obtained
in the small-scale tests carried out in the scope of the Fire-FRP project and reported
in Correia et al. (2013b).

Regarding the characterisation of the tensile behaviour of the GFRP, tests were carried
out in GFRP specimens heated previously at different temperatures: 20 ◦C, 60 ◦C, 90 ◦C,
120 ◦C, 150 ◦C, 200 ◦C and 220 ◦C. The maximum temperature was set based on the
technical difficulties (laboratory restrictions of equipment) in performing tests at higher
temperatures. These difficulties included the following aspects: (i) keeping the specimens
at a constant temperature; (ii) keeping the grips of the test machine sufficiently cold;
and (iii) temperature limitations of the measuring equipment, including the strain gauges.
The specimens used in the tests consisted of rectangular laminates obtained by sawing
GFRP plates (with similar fibre architecture to that of the tubular profiles) in samples of
1800 mm length, 20 mm width and 10 mm thickness.

Regarding the compressive behaviour of the composites, tests were carried out in 50 mm
long GFRP I-specimens (section similar to that used in the fire resistance tests) at 20 ◦C,
60 ◦C, 90 ◦C, 120 ◦C, 150 ◦C, 200 ◦C and 250 ◦C.

In both tensile and compressive tests, the instrumentation installed included: (i) strain
gauges to measure the axial deformation; (ii) thermocouples to measure the temperature
in the specimen; and (iii) a load cell. Furthermore, in the compressive tests, two normal
temperature displacement transducers and one high-temperature displacement transducer
were also used.

During the compressive tests, it was observed that the strain gauges provided unreli-
able results at elevated temperatures. However, the ultimate compressive strength results,
being measured by the load cells were considered accurate. Consequently, given the ab-
sence of information on the literature about this property as a function of temperature,
the reduction of the compressive elasticity modulus was assumed to be equal to the re-
duction of the ultimate compressive strength. Further experiments are needed to validate
this hypothesis.

Furthermore, as in both tensile and compressive tests, a roughly linear behaviour of
the composite until failure was observed, in the numerical simulations, a constant elastic
modulus was adopted for each temperature.

As the temperatures reached in the tests of the beams and columns were higher than
those used in the mechanical tests, the following hypotheses were considered: (i) the
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Temperature (◦C) Tensile (%) Compressive (%) Shear (%)
20 100 100 100
60 87 68.1 100
90 86 42.5 83.1
120 83 25.1 42.8
150 82 15.3 24.2
200 83 7.8 16.9
220 74 6.76 14.7
250 71 5.2 11.3
350 61 0.1 0.1
450 52 0.1 0.1
550 40 0.1 0.1
1000 0.1 0 0.1

Table 7.13: Percentage retention of the elastic and shear moduli considered at each tem-
perature.

compressive elastic modulus of the laminate up to 350 ◦C is residual and equal to 0.1%
of the elastic modulus at ambient temperature, as this is the decomposition temperature
of the matrix and, after this temperature, the material only contains fibres that do not
develop a significant resistance to compression (if they are not surrounded by the matrix);
and (ii) for the tensile behaviour, it was considered that after 350 ◦C the matrix of the
composite is decomposed and only the glass fibres are present. Hence, based on the work
of Feih et al. (2010), reductions of 52% and 40% of the elastic modulus (compared to
ambient temperature) were assumed at 450 ◦C and 550 ◦C, respectively. At 1000 ◦C, a
reduction to 0.1% of the ambient temperature strength was adopted, as this is the melting
temperature of the glass fibres.

Regarding the shear behaviour of the composites, GFRP specimens were tested at
20 ◦C, 60 ◦C, 90 ◦C, 120 ◦C, 150 ◦C, 200 ◦C and 250 ◦C. The specimens consisted of
GFRP rectangular laminates obtained by sawing the GFRP plates used in the tensile
tests at an angle of 10◦ in samples of 800 mm length, 25 mm width and 10 mm thickness.
In all the specimens, strain gauges were installed according to a rosette arrangement and
thermocouples were used to record the temperature.

Due to the inconsistent results obtained with the strain gauges, the shear modulus at
each temperature was computed considering the same reduction that was measured for
the shear strength. Once more, the shear modulus at a given temperature was considered
constant. As for the compressive elastic modulus, a residual value of 0.1% of the shear
modulus at ambient temperature was assumed for temperatures higher than 350 ◦C. This
hypothesis needs to be validated based one further experiments.

Table 7.13 summarizes the percentage retention of the elastic and shear moduli at each
temperature, being the reference values for tensile elastic, compressive elastic and shear
moduli equal to 32.93 GPa, 29.97 GPa and 3.77 GPa, respectively. Figure 7.52 illustrates
the variation of the elastic and shear moduli between 20 ◦C and 1000 ◦C.

Regarding the thermal expansion coefficient of the GFRP, table 7.14 summarizes the
different values reported in the literature. It can be observed that, at ambient temperature,
the variability of the thermal expansion coefficient value is high, depending mainly on the
composite material (volume of fibres and type of fibres and resin) and also on the geometry
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Figure 7.52: Temperature-dependent variation of the elastic and shear moduli (divided by
the respective values at a reference temperature equal to 20 ◦C).

of the sample tested. Furthermore, the thermal expansion coefficient is anisotropic, pre-
senting different values in each direction (longitudinal, transverse and through-thickness).
This cannot be considered in the one-dimensional thermomechanical model proposed. The
experimental results presented in Tant et al. (1985) and Henderson et al. (1987) illustrate
that the thermal expansion coefficient depends strongly on the temperature. However,
the values reported were obtained in small samples and, consequently, the results could
be affected by the scale effect. This was already discussed in section 2.3.3, where the
graphical results of the mentioned references were reported.

In the present study, the thermal expansion coefficient was considered constant with
the temperature, since there was no experimental data available and the values reported
in the literature were not applicable to the material used in the tests. A value equal to
10−5 ◦C−1 was assumed. It was obtained as the average of the values reported by Tracy
(2005) and the one indicated by Bank (2006) for GFRP shapes, both referring to the
longitudinal direction. Both references were considered, as the corresponding materials
are similar to the one used in the tests. However, the thermal expansion coefficient is
dependent on the temperature and this could have an important effect, especially in the
mechanical behaviour of the columns, as it will be discussed in section 7.7.3.

CS boards

In the analyses carried out, the CS elastic and shear moduli are modelled as constant
and temperature-independent. The elastic modulus for tensile and compressive behaviour
was set equal to 1200 MPa (value provided by the manufacturer). The shear modulus
was computed considering that the material is elastic and the Poisson ratio is 0.2. Hence,
a linear shear modulus of 500 MPa was obtained. The thermal coefficient expansion is
equal to −2.5 · 10−6 ◦C−1 for temperatures between 20 and 600 ◦C (value provided by
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(b) Beam simplified by symmetry.

Figure 7.53: One-dimensional mechanical model of the beam (dimensions in meters).
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Figure 7.54: Time-deflection evolution.

the manufacturer). Since no more information was found in the literature, the mentioned
value was adopted for temperatures higher than 600 ◦C. The contribution of the CS boards
to the mechanical response of the profiles is not significant when compared with that of
the GFRP profile.

7.6.3 Spatial discretization of beams

In the present section, a study about the spatial discretization along the length of the
unprotected GFRP tubular beam subjected to fire in the bottom face is reported. Fig-
ure 7.53a summarizes its boundary conditions. In order to reduce the CPU time required
for the simulations, the mechanical model of the beams was simplified by symmetry, hence
only a half of the beam was modelled considering the boundary conditions illustrated in
figure 7.53b. The load considered in the present study is equal to P = 5.85 kN (the one
used in series S1 and S2).

Four meshes of 3, 6, 12 and 24 one-dimensional linear elements were used. Figure 7.54
depicts the experimental vertical displacement measured in the midspan of the beam and
the numerical vertical displacements computed with each mesh.

It can be seen that the vertical displacement evaluated with all meshes is coincident.
However, for all simulations of the thermomechanical behaviour of the GFRP profiles, the
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Figure 7.55: One-dimensional mechanical model of the column.

GFRP profile

Furnace

Figure 7.56: Temperature distribution assumed along the GFRP profiles length.

mesh consisting of 12 linear elements was selected because, as discussed in section 7.6.4,
during the experimental tests, the extremities of the bar were colder than its central
sections (as they were outside of the furnace). In order to take into account this effect
and prescribe the colder temperatures at those extremity sections, a good refinement of
the bar’s length had to be considered.

In the simulations of the columns, a mesh of 30 linear elements was used. Figure 7.55
illustrates the one-dimensional model and the boundary conditions adopted.

7.6.4 Temperature distribution along the length bar

As mentioned, the temperature in all bar sections cannot be considered constant in the
numerical simulations as, during the tests, the supports and a small length of the bars were
located outside of the furnace, as illustrated in figure 7.1. Hence, the beams and columns
had to be modelled considering that the central 0.95 m length of the profile was heated
by the furnace (and, consequently, the temperature distribution in those cross sections
was that computed in the thermal simulations), while the extremities of the bars had to
be considered as being at colder temperatures. In the model, a simplifying assumption is
considered that a linear reduction of the temperature takes place from the heated sections
towards the supports, where the entire cross section is at ambient temperature. Figure 7.56
schematically represents the temperature distribution assumed.

In order to evaluate the effect of considering that all the cross sections are inside of
the furnace and present the computed temperature distribution instead of considering
that the extremities of the bars are colder, two simulations considering both cases were
carried out. In these simulations, a mesh of 12 linear elements was used. The temperature
distribution in the unprotected tubular profile subjected to fire in the bottom face was
computed considering the model of Tracy (2005). The mechanical properties of the GFRP
material are those defined in section 7.6.2.

Figure 7.57 illustrates the evolution of the vertical displacement at midspan as a func-
tion of time. The experimental curve and both numerical curves obtained considering
either a constant or a variable distribution of the temperatures along the cross sections of
the beam are depicted. It can be observed that the accuracy of the numerical results when
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Figure 7.57: Variation of midspan deflection of unprotected tubular beam considering
different temperature distributions along the length.

compared with experimental results increases when the temperatures along the length of
the beam are variable.

7.6.5 Conclusions regarding the mechanical modelling and final
characteristics of the mechanical simulations

The current section presented preliminary studies about the mechanical properties of
the GFRP and CS materials, the spatial discretization of the bars and the effect of the
temperature distribution along the bars in the vertical displacement of the beams.

Regarding the mechanical properties of the GFRP, material characterization tests ob-
tained within the Fire-FRP project were only carried out up to a maximum temperature of
250 ◦C. These tests showed that the behaviour of the GFRP is almost linear until failure.
For the temperatures where no experimental results were available, a linear degradation
of the elastic and shear moduli was assumed.

Regarding the spatial discretization, it was demonstrated that a mesh with 3 linear
elements was enough to reproduce the vertical displacement of the beams. However, in the
study regarding the temperature distribution along the bar’s length, this effect proved to
be relevant and influenced the accuracy of the beam’s midspan deflection evolution. Hence,
a mesh of 12 elements was selected in order to be able to prescribe lower temperatures in
the cross sections outside of the furnace. This result was applied to define the number of
elements in the columns, where 30 elements were used.
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7.7 Thermomechanical simulations of GFRP beams and
columns

7.7.1 Introduction

The current section presents the numerical simulations of the thermomechanical be-
haviour of GFRP beams and columns exposed to fire.

The mechanical response is evaluated with the in-house uncoupled FE code described in
chapter 6. In this model, the temperatures computed in the thermal simulations (reported
in section 7.5) are used as input. The characteristics of the mechanical models are the ones
described in section 7.6, namely the mechanical properties of the materials, the spatial
discretization and the temperature distribution along the bars.

The cases analysed in this section are the ones summarized in tables 7.1 and 7.2
(page 150).

In the beam simulations, the numerical and experimental variation of the vertical
displacement at midspan section are compared. For the column simulations, one compares
the variation of the axial shortening and the variation of the vertical displacement (out
of plane) at the central section. As discussed in section 7.5, for several cases, due to the
time step size, it was not possible to obtain converged solutions for the entire duration of
the experiments.

7.7.2 GFRP beams

The current section summarizes the numerical and experimental variation of the ver-
tical displacement at the midspan section of the GFRP tubular and I-section profiles
exposed to different fire scenarios.

Figure 7.58 depicts the variation of the vertical displacement obtained in the unpro-
tected GFRP tubular beam subjected to fire in 1-face, for two different load levels. For
both loading conditions, the FE code is able to reproduce the experimental measurements
with relatively good accuracy (until the last instant for which a converged solution of the
temperature field was obtained). It can be seen that for both cases, the model slightly
overestimates the experimental data (20% and 10% at 1050 s when the loads applied are
11.7 kN and 18.7 kN, respectively). The results show that the relative differences in the
evaluation of the temperature field throughout the cross section do not affect significantly
the mechanical results. The better agreement for the mechanical response may be due
to the fact that the tensile elastic modulus exhibits a progressive and very moderate re-
duction with temperature and, consequently, the inaccuracy in the reproduction of the
temperature field does not readily propagate to the mechanical results.

The complete thermal response of the unprotected tubular cross section reported in
the appendix F) was also used to evaluate the mechanical behaviour of the beam. Fig-
ure 7.59 shows the numerical and experimental variation of the vertical displacement in
the unprotected GFRP tubular beam subjected to fire in 1-face. The numerical response
depicted in figures 7.58 and 7.59 are coincident for the times where a converged solution
was evaluated. Once more, it can be concluded that the FE code is able to reproduce the
experimental results with good accuracy, specially for the second loading condition. The
numerical results evidence that the model proposed is unable to represent the failure of
the beam, as the material is modelled as linear (for different temperatures) and a failure
criteria was not implemented.
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(a) Load 1 (11.7 kN).
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(b) Load 2 (18.7 kN).

Figure 7.58: Midspan deflection evolution in the unprotected tubular beam subjected to
fire in 1-face.
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(b) Load 2 (18.7 kN).

Figure 7.59: Midspan deflection evolution in the unprotected tubular beam subjected to
fire in 1-face (complete response).

Figure 7.60 displays the numerical and experimental variation of the vertical displace-
ment in the protected GFRP tubular beam subjected to fire in 1-face. Once more, good
agreement between numerical and experimental results is observed for the two load levels
considered.

The variation of the vertical displacements, both computed and measured, in the un-
protected and protected tubular GFRP beams exposed to fire in 3-faces is presented in
figures 7.61 and 7.62, respectively. In the first case, the measured experimental variation
of the vertical displacement is reproduced by the numerical solution with good accuracy.
In the second case, the numerical solution indicates that the beam experiments a positive
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(b) Load 2 (18.7 kN).

Figure 7.60: Midspan deflection evolution in the protected tubular beam subjected to fire
in 1-face.

vertical deflection variation during the first 8 minutes of exposure. However, the experi-
mental data show that the variation of the vertical displacement oscillates from positive to
negative (reduced values). After 8 minutes, the model seems to recover the experimental
response of the beam. The differences encountered in this case may be due to the afore-
mentioned possible inaccuracy in modelling the effects of thermal expansion in the GFRP
material.

Finally, figures 7.63 and 7.64 display the variation of the vertical displacement in
the midspan of the unprotected and protected GFRP I-section beams exposed to fire in
3-faces. The numerical results obtained in the unprotected beam are coherent with the
experimental ones, even if, at the end of the simulation the numerical and the experimental
values exhibit different magnitude. As discussed in section 7.5, the deviation can be due
the duration of the test, which was very short and may have introduced an additional
variability to the experimental results. Furthermore, the furnace temperatures during the
test period were considerably lower than those defined in ISO 834 (1975).

In the case of the protected GFRP I-section beam, a positive variation of the midspan
deflection is observed experimentally until 10 minutes. After this moment, the deflection
variation was negative. In general terms, the variation of the vertical displacement can be
considered to be well reproduced by the thermomechanical model.

7.7.3 GFRP columns

The current section presents the results obtained for the thermomechanical simulations
of the GFRP tubular and I-section columns exposed to fire.

At this point, it is deemed relevant to make a remark about the experimental setup
used in the fire resistance tests, namely in the tests performed on GFRP columns, and its
relation with the boundary conditions defined in the thermal simulations. In section 7.4.2
a discussion about the boundary conditions needed to obtain accurate numerical results
was presented. One of the conclusions was that the fluid in the cavity has to be taken into
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Figure 7.61: Midspan deflection evolution in
the unprotected tubular beam subjected to
fire in 3-faces (11.7 kN).
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Figure 7.62: Midspan deflection evolution in
the protected tubular beam subjected to fire
in 3-faces (11.7 kN).
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Figure 7.63: Midspan deflection evolution in
the unprotected I-beam exposed to fire in 3-
faces (7.4 kN).
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Figure 7.64: Midspan deflection evolution in
the protected I-beam exposed to fire in 3-
faces (7.4 kN).

account, as the natural convection in the cavity together with the radiation between the
walls of the cavity, significantly influences the temperature field in the cross section. In the
fire resistance tests, the columns were tested in a horizontal position, and the numerical
simulations performed in this work aimed at reproducing the test conditions observed in
those tests. Since natural convection is affected by gravity, it is worth pointing out that
the numerical simulations performed are not valid for real columns, whose axis is along
the vertical direction. In this case, in order to accurately take into account the effects of
natural convection, a three-dimensional thermal model needs to be developed.

Figure 7.65 illustrates the numerical and experimental variation of the vertical dis-
placement in the central section and the axial shortening obtained in the unprotected
GFRP tubular column exposed to fire in the bottom face.
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(a) Variation of the vertical displacement.
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(b) Axial shortening.

Figure 7.65: Unprotected tubular column subjected to fire in 1-face (55 kN).

Analysing the experimental curves, it can be observed that, during the first 6 minutes,
the rate of the variation of the vertical displacement in time of the column is negative,
while the axial shortening is positive and, consequently, the column is expanding due to
the temperature increase. After that instant, the sudden2 variation of the vertical displace-
ment is positive and the column exhibits axial shortening until failure. In the numerical
results, the same effect is observed but in a different magnitude. In fact, until 2.5 minutes,
the column develops a slight negative vertical displacement and axial expansion. Sub-
sequently, the vertical displacement becomes positive and the column starts contracting.
The main difference between the numerical and the experimental results occurs during
the first instants, i.e., during the (experimental) thermal expansion of the column. The
model is not able to represent correctly this effect, probably due to the consideration of the
thermal expansion coefficient as constant. Furthermore, as referred in section 7.6.2, the
thermal expansion coefficient is also anisotropic and the values available in the literature
— summarized in table 7.14 — point out that the thermal coefficient in the transversal
and through-thickness directions can be until three times higher than in the longitudinal
value. This fact cannot be considered in the one-dimensional model proposed and this may
have also affected the quality of the results. Further simulations were carried out using
different values of the thermal expansion coefficient — 5 · 10−5 and 2 · 10−5 — in order
to evaluate this effect in the results. It was observed that higher values of the thermal
expansion coefficient represent with more accuracy the initial behaviour of the column.
The results obtained indicate that the thermal expansion coefficient strongly influences
the solution and, consequently, it can be considered as a fundamental parameter for the
numerical analyses of columns. Hence, deepest knowledge about its value and evolution
with the temperature is required in order to reproduce correctly the mechanical response
of the columns. In addition, the relative differences in the temperature field of the cross
section will affect more the mechanical response of the columns than that of the beams,

2This sudden variation in the experimental vertical displacement is most likely due to an instantaneous
rotation at the supports (associated to friction in the test setup components), which obviously can not be
reproduced by the model.
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(a) Variation of the vertical displacement.
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(b) Variation of the axial shortening.

Figure 7.66: Unprotected tubular column subjected to fire in 1-face (110 kN).

as the variation of the compressive elastic modulus with the temperature is more signif-
icant and steep when compared with the variation of the tensile elastic modulus. It is
also very likely that the response of the columns is influenced by creep, which is also not
accounted for in the model due to the lack of experimental data available. In fact, it is
well known that GFRP materials present significant creep at ambient temperature, with
the magnitude of such viscoelasticity increasing experimentally with temperature. This
effect is expected to be much more relevant in the columns (in compression) than in the
beams, where the glass fibres (that do not creep) carry the tensile stresses at the hottest
part of the cross section (Dutta and Hui, 2000).

The numerical results also evidence that the model does not represent the failure of
the columns, because the material was modelled as linear at each temperature and no
failure criteria were defined.

In addition, the thermomechanical simulation of the unprotected tubular columns with
a compressive load equal to 110 kN was also performed. Figure 7.66 depicts the numerical
and experimental vertical displacement variation and axial shortening. The variation
exhibited by the experimental curve is less uniform than in the previous case. This should
be attributed to adjustments in the components of the test setup (due to friction between
pieces, minute settlement/rotation of supports) and, to some extent, the slight changes in
the applied load during the test.

Figure 7.67 displays the numerical and experimental vertical displacement variation
and axial shortening obtained for the unprotected GFRP tubular column subjected to fire
in 3-faces.

The experimental results illustrate that, until 1 minute of exposure, the column presents
a reduced axial shortening and a positive vertical displacement. However, after this in-
stant, the column starts to expand and the vertical displacement becomes negative until
failure — when the vertical displacement suddenly changes to positive. Numerically, at
the initial instants, the column presents axial expansion due to the temperature gradient
and the variation of the vertical displacement is negative. After approximately 2 minutes,
a modification in the slope of the curves can be observed with both variations of vertical
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Figure 7.67: Evolution of mechanical response of unprotected tubular column subjected
to fire in 3-faces (55 kN).

displacement and axial shortening being positive. The causes of this disagreement between
the numerical and the experimental results could be the following: (i) the adequacy of the
GFRP physical-mechanical properties adopted, especially for the thermal expansion coef-
ficient; (ii) the nonlinear elastic constitutive model employed for the material (as the stress
resultants distributions in hyperstatic structures is dependent on it); (iii) the accuracy of
the temperature field computed during the thermal simulations; (iv) the creep, which, as
mentioned, is not considered in the simulations; and (v) the boundary conditions during
the experimental test (namely, the clamped support, which may have not fully prevented
the rotation at the left support).

Regarding the thermomechanical behaviour of the protected tubular columns subjected
to fire in the bottom face, two simulations were carried out considering different load levels:
55 kN and 110 kN. However, as the experimental results obtained with the first load level
are difficult to interpret, only the simulation of the column subjected to the second load
level (110 kN) is reported and illustrated in figure 7.68.

The variation of the vertical displacement measured experimentally oscillates from
positive to negative until failure, which occurs at 37 minutes with a sudden positive ver-
tical deflection variation. During the entire duration of the test, the values of the vertical
displacement were reduced (below 0.2 mm, close to the precision of the displacement trans-
ducer), while the axial shortening was positive and significant. However, in the numerical
simulations, the column presents a monotonic and positive variation of the vertical dis-
placement. Regarding the axial shortening, the numerical results indicate a continuous
axial shortening of the column (as the experimental data), although the magnitude of
such variation is lower than measured. The reasons mentioned before may explain these
relative differences.

Additional thermomechanical simulations of GFRP tubular columns and unprotected
and protected I-section columns, all exposed to fire in 3-faces, were carried out. The nu-
merical response observed in all cases was similar: during the initial instants, the columns
developed a negative variation of the vertical displacement and an expansion due to the
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(b) Variation of the axial shortening.

Figure 7.68: Evolution of mechanical response of protected tubular column subjected to
fire in 1-face (110 kN).

temperature increase. Subsequently, the variation of the vertical displacement increased
progressively until attaining positive values. The same effect could be observed in the
evolution of the axial shortening, with the initial expansion changing to a subsequent
shortening. These results are reported and discussed in the appendix H, as they do not
provide further information regarding the thermomechanical behaviour of GFRP columns.

7.7.4 Concluding remarks about the thermomechanical modelling

The current section presented the results obtained in the thermomechanical simulations
of GFRP beams and columns. A brief summary of those results is presented next.

The mechanical properties of the materials involved, i.e., the GFRP profiles and CS
boards, were considered. For compression and shear, the moduli reduction with temper-
ature was based on the reduction observed in the ultimate strength. The material model
proposed assumed that the elastic and shear moduli at each temperature is constant. The
elastic and shear moduli of the CS boards were considered constant and temperature-
independent, assuming the values provided by the manufacturer.

Numerical analyses about the influence of the spatial discretization and the tempera-
ture distribution along the bars were also presented, the second study being fundamental
for the thermomechanical simulation of the GFRP profiles.

In general, the thermomechanical model proposed simulated with good accuracy the
variation of the midspan displacement of the beams subjected to different load levels. The
differences between the numerical and experimental temperatures were not significantly
propagated to the mechanical results; this was attributed to the fact that the variation
of the tensile elastic modulus with temperature is slow and has relatively low magnitude.
However, the model proposed was much less accurate in simulating the mechanical be-
haviour of the columns. One possible reason is the adequacy of the constitutive model
(nonlinear elastic) employed to define the mechanical behaviour of the material. This
model affects the stress resultants distributions in the columns as they are hyperstatic
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structures. Contrariwise, the beams are statically determined and the reactions in the
supports do not depend on it.

As pointed out along the chapter, the adequacy of the GFRP mechanical properties
adopted, the accuracy of the temperature field computed, the (non) consideration of the
creep effects and, finally, the boundary conditions defined in the model may explain this
worse simulation accuracy.

7.8 Thermal simulation of tubular and I-profiles subjected
to different fire scenarios

7.8.1 Introduction

This section presents numerical results obtained in tubular and I-sections subjected
to different fire scenarios from those used in the experimental tests. The main goal is
to assess the applicability of the thermal code to other possible fire scenarios during a
building’s service life. The following applications were tested:

• Unprotected tubular GFRP cross section completely exposed to fire in 3-faces;

• Unprotected tubular GFRP cross section exposed to fire in 4-faces;

• Protected tubular GFRP cross section exposed to fire in 4-faces;

• Protected GFRP I-section completely exposed to fire in 3-faces;

• Protected GFRP I-section exposed to fire in 4-faces.

The results presented in this section illustrates the ability of the developed code to
exclusively analyse the thermal response of a given cross section exposed to a fire situation.
In some cases the achieved temperatures largely exceed the temperature of decomposition
of the GFRP matrix.

In all applications, convective and radiative heat flux are prescribed in the faces exposed
to fire (the temperature is time dependent and follows the ISO 834 (1975) curve) and to the
ambient (the ambient temperature was set equal to 20 ◦C). In the cavity, both the natural
convection and the radiative heat exchange between faces are considered. The time step
used was 1 second. The stabilization SUPG was considered in all the simulations. Further
features of the numerical simulation are detailed in the corresponding subsection.

A study about the behaviour of the fluid in the cavities is carried out for all the ap-
plications, illustrating the temperature and velocity fields at different instants. Moreover,
the temperature evolution in particular locations of the cross sections is also depicted.

7.8.2 Unprotected tubular GFRP cross section completely exposed to
fire in 3-faces

A nonlinear transient simulation about the thermal behaviour of an unprotected tubu-
lar profile exposed to fire in 3-faces was performed using an adaptive mesh of 3409 nodes
and 784 elements (see figure 7.24a). The final computational time set was 3600 seconds
(1 hour).

Figure 7.69 illustrates the velocity and temperature field at different computational
times. It can be observed that at the end of 1 hour the temperature of the air and of the
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cross section (with exception of the top flange) is almost identical and the velocity in the
fluid is almost null, indicating that the steady state is almost reached.

It can be observed that the behaviour of the fluid in the cavity when the lateral faces of
the section are completely heated is contrary to the behaviour of the fluid when the cavity
is heated only in the bottom face (section 7.4.3): in the present case two Bénard cells are
generated in the cavity; the flow in the right cell is counter-clockwise, being clockwise in
the left cell.

In order to compare these results with those reported in figure 7.31 (section 7.5.3),
figure 7.70 depicts the velocity and temperature fields, the streamlines and the velocity
vectors at t = 100 s.

These results show that small variations in the boundary conditions cause remarkable
changes in the behaviour of the fluid in the cavity. This fact is important as, in future
simulations, efforts will have to be carried out in order to investigate in further depth
the fluid dynamics problem, as it constitutes the main handicap in the simulations of the
thermal behaviour of GFRP profiles containing a cavity when using the present code.

Figure 7.71 illustrates the temperature distribution in the thermocouples, whose po-
sition is summarized in table 7.3. The temperatures in the bottom flange and in the
lateral faces are almost identical in all the instants. The temperatures in the top flange
are lower than the temperatures in the bottom flange and web due to the radiative and
convective heat transfer between the ambient and the top flange. The results also illus-
trate that the temperature in the top flange is not uniform, the maximum temperature
gradient being approximately equal to 300 ◦C at 3600 seconds (value evaluated between
the thermocouples T1 and T3).

7.8.3 Unprotected tubular GFRP cross section exposed to fire in
4-faces

This example was performed using the mesh depicted in figure 7.24a. The final com-
putational time set was 3600 seconds.

Figure 7.72 shows the velocity and temperature field at different instants. In this case,
at the end of the computational time, the temperature in the fluid and in the solid can be
considered identical. Regarding the velocity field, two Bénard cells are generated where
the ascension of the fluid occurs in the nearest of the lateral faces. The velocity is reduced
at all time steps, as well as the temperature gradient in the fluid.

Figure 7.73 depicts the velocity and temperature fields at 3600 seconds, using a different
scale than that on the figures 7.72g and 7.72h . It can be observed that the velocity in
the fluid is close to null and that the temperature in the cross section is almost uniform
at all points, the maximum difference being 5 ◦C.

Finally, as in the previous section, figure 7.74 illustrates the temperature distribution
in the thermocouples (table 7.3). The temperatures in the bottom face, web and thermo-
couple T2 are almost identical during the 3600 seconds, as these thermocouples are located
at the same distance from the heated face. By analysing the temperature distribution in
the top flange, it can be observed that, between 10 and 30 minutes, the temperature
at each thermocouple is not coincident. The temperature decreases successively between
thermocouples T1, T2 and T3. This result is coherent with the increase of the distance
between the thermocouples and the top face. Figure 7.72 indicates that, between 10 and
30 minutes, the velocity of the fluid is not null and the Bénard cells are created. After
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(a) Resultant velocity field, t = 300 s. (b) Temperature field, t = 300 s.

(c) Resultant velocity field, t = 900 s. (d) Temperature field, t = 900 s.

(e) Resultant velocity field, t = 1800 s. (f) Temperature field, t = 1800 s.

(g) Resultant velocity field, t = 3600 s. (h) Temperature field, t = 3600 s.

Figure 7.69: Unprotected tubular GFRP cross section with 3-faces exposed to fire.
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(a) Temperature field. (b) Resultant velocity field.

(c) Streamlines. (d) Velocity field.

Figure 7.70: Results for tubular profile exposed to fire in 3-faces (lateral faces completely
exposed to fire).

30 minutes of exposure, the temperature in all the thermocouples is identical, indicating
that the cross section is at uniform temperature.

7.8.4 Protected tubular GFRP cross section exposed to fire in 4-faces

A transient nonlinear analysis was performed employing a mesh of 5489 nodes and
1296 elements (896 in the solid and 400 in the cavity), the final computational time set
equal to 3600 seconds. Figure 7.75 illustrates the mesh used.

Figure 7.76 depicts the temperature and velocity fields at different time steps. As
in the previous case, the temperature in the cavity is uniform, as well as in the GFRP
composite.

The Bénard cells are observable only at 300 seconds. At 900 seconds, the previous two
vertical cells split into four cells, two reduced cells being situated in the top of the cavity.
At 1800 and 2600 seconds the fluid presents a complex behaviour, where the Bénard cells
break down. The behaviour of the fluid is not symmetric any more with respect to the
vertical axis, even if the geometry and the boundary conditions are symmetric.

Figure 7.77 illustrates the temperature evolution in the thermocouples (whose position
is detailed in table 7.3) until 1 hour, where it can be observed that the temperature
in all the GFRP composite is almost uniform. However, after 30 minutes of exposure,
the temperature in thermocouple T3 is higher than the temperature in the remaining
thermocouples, because thermocouple T3 is closer to the heated face.
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(b) Web.
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(c) Bottom flange.

Figure 7.71: Temperature evolution in the thermocouples position obtained in a tubular
cross section completely exposed to fire in 3-faces.
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(a) Resultant velocity field, t = 300 s. (b) Temperature field, t = 300 s.

(c) Resultant velocity field, t = 900 s. (d) Temperature field, t = 900 s.

(e) Resultant velocity field, t = 1800 s. (f) Temperature field, t = 1800 s.

(g) Resultant velocity field, t = 3600 s. (h) Temperature field, t = 3600 s.

Figure 7.72: Unprotected GFRP tubular cross section with 4-faces fire exposure.
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(a) Resultant velocity field, t = 3600 s. (b) Temperature field, t = 3600 s.

Figure 7.73: Velocity and temperature field at t = 3600 s.

7.8.5 Protected GFRP I-section completely exposed to fire in 3-faces

A mesh of 8537 nodes and 2016 elements (cf. figure 7.49) is used in order to perform
the transient nonlinear FE analysis. The time step was set equal to 1 second and the final
computational time — where a converged solution was obtained — was 1800 seconds.

Figure 7.78 shows the temperature and velocity fields at different instants. The be-
haviour of the fluid is similar to that observed in the protected I-profile exposed to fire
in 3-faces where the upper 2.5 cm of the lateral faces are insulated (section 7.5.7). In
order to compare these results with the ones presented in section 7.5.7, the velocity and
temperature fields at 1000 s are also therein depicted.

It can be observed that, in this case, only one clockwise convective cell is developed
at 1000 s, contrary to the behaviour of the fluid when the lateral faces of the cavity are
partially heated.

At 1800 seconds, a second convective cell is formed in the top of the cavity, this
behaviour being similar to that reported in section 7.5.7.

Figure 7.79 presents the temperature evolution in the thermocouples position defined
in table 7.11. It can be observed that the temperature in the thermocouples is practically
uniform, this result being coherent with figure 7.78.

7.8.6 Protected GFRP I-section exposed to fire in 4-faces

In the present case, the protected I-section is exposed to fire in 4-faces. A mesh (based
on the mesh employed in the previous example) of 9449 nodes and 2240 elements (1408 in
the solid and 832 in the cavity) is used in order to perform the FE analysis. Figure 7.80
depicts the mesh used. The final computational set was 3600 seconds.

Figure 7.81 shows the temperature and velocity fields at different instants and fig-
ure 7.82 depicts the temperature evolution in the thermocouples position (table 7.11). In
this case, the temperature in all thermocouples is identical and, consequently, the temper-
ature in the GFRP is nearly uniform in all instants.

7.8.7 Final remarks

In the present section, further applications of the FE model were presented, in which
tubular and I section profiles were subjected to fire scenarios different from those used in
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(b) Web.
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(c) Bottom flange.

Figure 7.74: Temperature evolution in the thermocouples position obtained in a tubular
cross section subjected to fire completely in 4-faces.
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Figure 7.75: Mesh employed in the modelling of the protected tubular cross section exposed
to fire in 4-faces.

the experiments. For all cases tested, relatively long computational times were obtained,
always longer than 1800 seconds. In fact, with the exception of the protected I-profile
completely exposed to fire in 3-faces, for all cases the final computational time was 3600
seconds.

The results presented are coherent with those reported in section 7.5, indicating, once
more, the importance of investigating the fluid flow in the cavity.

7.9 Concluding remarks

The present chapter assessed the thermomechanical response of GFRP profiles (beams
and columns) subjected to different fire scenarios.

The thermomechanical model presented consists of an uncoupled FE code that com-
putes the temperature field in a generic cross section (two-dimensional FE model) and
the generalized displacement field in a bar using a total Lagrangian formulation (one-
dimensional FE model).

Regarding the thermal simulations of the profiles tested, the following conclusions can
be drawn:

• For cross-sections containing enclosed cavities (such as tubular profiles or protected
I-sections), the consideration of the radiative heat exchange between the faces of
the cavity and the natural convection is essential in order to accurately simulate the
temperature field.

• The consideration of the radiative heat exchange together with the natural convec-
tion considerably increases the CPU time in the simulations.

• Modelling the cavity corners as being sharp introduces singularities in the radiosity
field, which affect the temperature field in their vicinity, i.e., at small distances from
the singularities, but not in the thermocouples position.

Different fluid flow behaviours into the cavities are observed: (i) in both protected and
unprotected tubular cross sections exposed to fire in the bottom face, two convective cells
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(a) Resultant velocity field, t = 300 s. (b) Temperature field, t = 300 s.

(c) Resultant velocity field, t = 900 s. (d) Temperature field, t = 900 s.

(e) Resultant velocity field, t = 1800 s. (f) Temperature field, t = 1800 s.

(g) Resultant velocity field, t = 3600 s. (h) Temperature field, t = 3600 s.

Figure 7.76: Protected tubular GFRP cross section with 4-faces exposed to fire.
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(a) Top flange.
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(b) Web.
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(c) Bottom flange.

Figure 7.77: Temperature evolution in the thermocouples position obtained in a protected
tubular cross section subjected to fire in 4-faces.
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(a) Resultant velocity field, t = 300 s. (b) Temperature field, t = 300 s.

(c) Resultant velocity field, t = 900 s. (d) Temperature field, t = 900 s.

(e) Resultant velocity field, t = 1000 s. (f) Temperature field, t = 1000 s.

(g) Resultant velocity field, t = 1800 s. (h) Temperature field, t = 1800 s.

Figure 7.78: Protected GFRP I-section with 3-faces subjected to fire.
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(b) Web.
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(c) Bottom flange.

Figure 7.79: Temperature evolution in the thermocouples position in a protected I-section
subjected completely to fire in 3-faces.
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Figure 7.80: Mesh employed in the modelling of the protected I-section exposed to fire in
4-faces.

are created, with an ascending movement of the fluid in the middle of the cavity; (ii) in
the cavity of the protected and unprotected tubular cross sections with 3-faces (partially)
exposed to fire, four convective cells are formed. Two main parallel cells are created in the
bottom of the cavity, where the ascending flow occurs in the vicinity of the lateral faces.
Two secondary parallel convective cells are located in the top of the cavity, where the left
and right cells present anti-clockwise and clockwise rotation, respectively and (iii) in the
case of the protected I-profile, two vertical convective cells are created. The main cell is
located in the bottom of the cavity and presents a clockwise movement, while a secondary
anti-clockwise cell is created in the top.

In general, a good agreement between the experimental and numerical thermal re-
sponses was obtained. However, in the cases where radiative heat exchange in the cavity
and natural convection are considered simultaneously, the code developed presented con-
vergence issues. In those cases, very small time steps are required in order to obtain the
complete thermal response of the profiles. This implies long CPU time when using the
implemented code, being this calculation not possible.

The following reasons may explain the differences between experimental and numerical
temperature results: (i) the Boussinesq assumption is inadequate when high temperature
gradients are involved; (ii) the thermal and physical properties of the fluid are temperature-
dependent; (iii) the thermo-physical properties of the materials (GFRP and CS) may be
different from those modelled; (iv) difficulties in imposing the boundary conditions, e.g., in
some tests, namely those with short durations, there were significative differences between
the temperature furnace and the ISO 834 (1975) curve and an efficient isolation of the
lateral faces of the profile that ensures the adiabatic condition was observed; and (v) in
the experiments, difficulties concerning the accurate positioning of the thermocouples and
the evaluation of accurate/reliable measurements in some thermocouples (particularly for
some types of fire exposure) were also reported.

Regarding de mechanical simulations, the following conclusions can be stated:

• The model proposed is able to reproduce with accuracy the variation of the vertical
displacement at the midspan of the beams subjected to different fire scenarios and
load levels. The consideration of the variation of the temperature along the bar’s
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(a) Resultant velocity field, t = 300 s. (b) Temperature field, t = 300 s.

(c) Resultant velocity field, t = 900 s. (d) Temperature field, t = 900 s.

(e) Resultant velocity field, t = 1800 s. (f) Temperature field, t = 1800 s.

(g) Resultant velocity field, t = 3600 s. (h) Temperature field, t = 3600 s.

Figure 7.81: Protected GFRP I-section with 4-faces fire exposure.
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(b) Web.
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(c) Bottom flange.

Figure 7.82: Temperature evolution in the thermocouples position in a protected I-section
subjected to fire in 4-faces.
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length is fundamental in order to reproduce the mechanical behaviour of the beams
tested.

• The mathematical model provided less accurate results regarding the mechanical
response of the columns; reasonable accurate predictions were only obtained for the
GFRP tubular column subjected to fire in the bottom face.

• The differences between the numerical and experimental results can be due to the
adequacy of the GFRP mechanical properties adopted, the accuracy of the temper-
ature field computed, the (non) consideration of the creep effects and the boundary
conditions defined in the model.

• In order to improve the accuracy of the model to reproduce the mechanical be-
haviour of columns, the following modifications in the model may have to be made:
consideration of the thermal expansion coefficient as temperature-dependent, imple-
mentation of a more adequate constitutive model for the GFRP, evaluation of the
compressive elastic modulus reduction with temperature and consideration of creep
deformations as a function of temperature.

In the final part of the chapter, additional applications of the thermal code were
reported in order to assess its field of application for different fire expositions.





Chapter 8

Conclusions and future
developments

8.1 Conclusions

The present thesis presented the development of a mathematical model to assess the
thermomechanical behaviour of GFRP profiles subjected to fire. The FE code implemented
allows computing the thermal and mechanical behaviour of GFRP profiles simultaneously
subjected to elevated temperatures and mechanical loads following an uncoupled scheme.

The thermal code consists of a coupled FE formulation that allows solving fluid flow
and heat transfer problems, considering the internal radiative heat exchange between the
walls of a cavity. The mentioned coupled problem can be solved in both transient and
steady state regime, in which the thermal properties of the material can be considered
temperature-dependent, as well as the convective coefficient.

The following assumptions were considered in the fluid dynamics code: (i) the fluid
is viscous and incompressible; (ii) the flow is laminar; and (iii) the density variation
of the fluid due to the temperature can be evaluated by using the Boussinesq model.
Furthermore, in order to improve the convergence to the solution and eliminate possible
numerical oscillations, the SUPG method was implemented.

The mechanical code consists of a one-dimensional FE formulation that allows com-
puting the generalized displacement vector at different instants by using the temperature
distribution in the cross section evaluated with the thermal code. At each time step where
the temperatures were obtained, a quasi-static analysis is performed. The algorithm im-
plemented allows solving the geometrically exact beam theory equations, in which the
Reissner–Simo kinematic assumptions were imposed. The mechanical properties of the
material can be considered temperature-dependent, using the axial strain-stress and shear
stress-distortion curves at each temperature.

In both FE codes, the resulting system of nonlinear equations is solved using the
Newton–Raphson method.

Several benchmark problems were solved to verify the solution of the implemented
algorithms, by comparing the obtained solutions with those reported in the literature or
obtained through a commercial software. Analysing the benchmark problems solved, the
following conclusions and comments can be stated:

• The consideration of the radiative heat exchange between faces increases significantly
the CPU time due to the computation of the geometrical term in the radiosity
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equation and because the radiosity matrix is full.

• The study conducted about the number of Gauss points to consider in the evaluation
of the geometrical term showed that the convergence to the solution is slow and, in
general, depends on the spatial discretization.

• The solution of the fluid dynamics problems depends strongly on the spatial dis-
cretization. Hence, it is important to design h-adaptive meshes considering the
boundary layers location.

• The CPU time required in thermal simulations where radiative heat exchange be-
tween faces and natural convection are involved simultaneously is high. In order to
reduce the CPU time, a simple adaptive time step scheme was successfully imple-
mented.

• The mechanical code allows computing the total displacement field of a beam or col-
umn subjected to a generic temperature distribution, considering all the geometrical
effects.

• Quadratic convergence of the iterative error in the asymptotic limit of the solution
was observed in all the examples reported, as expected when using the Newton–
Raphson method.

Regarding the thermal modelling of the GFRP profiles, the following main conclusions
and remarks are drawn:

• A discussion about the adequate boundary conditions to consider in the cavity of
the tubular cross section was reported. The experimental data was represented with
more accuracy when using the model that simultaneously considers the radiative
heat exchange between the faces of the cavity and the natural convection due to the
air.

• The spatial and temporal refinement employed is sufficient to obtain a negligible
numerical error in the temperatures evaluated at the thermocouples location.

• In most of the numerical simulations in which the radiative heat exchange and the
natural convection are considered simultaneously, at some point the code developed
presents convergence problems during the iterative solution process. To extend the
duration of the numerical results, a very small time step should be employed (0.01 s
or even lower). This time step is not practically feasible in the MATLAB (2012) FE
code developed and a more efficient code is needed in this respect (to be developed
in a different programming language).

• Regarding the influence of the geometry of the cavity in the solution, it was con-
cluded that the consideration of sharp corners introduces singularities in the radiosity
field that can interfere in the solution. It was observed that the existence of the sin-
gularities only affect the temperature field in the vicinity of the corners, while no
differences were found in the thermocouples position (the control points).

• The accuracy of the model in simulating the thermal behaviour of different GFRP
cross sections (in geometry) subjected to different fire exposures was carried out by
comparing the numerical and experimental temperature evolutions in the thermo-
couples. In general, a reasonable good agreement was obtained.
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• The differences between the numerical and the experimental temperatures can be
due to the following reasons: (i) the actual thermal properties of the GFRP and
the CS, the emissivity and the convective heat coefficient adopted were taken from
the literature and, hence, may not correspond exactly to those of the experiments;
(ii) the fluid is assumed incompressible and its thermal and physical properties are
considered constant; however, the air is compressible and its thermal properties
are temperature-dependent, which may have a non-negligible influence at high tem-
peratures; (iii) the Boussinesq model is employed to compute the buoyancy forces
developed due to the variation of the air density with the temperature, this hypoth-
esis being valid only for reduced temperature gradients; and (iv) the fluid flow is
modelled as two-dimensional, when, most probably it is 3D. Furthermore, there are
also uncertainties in the experimental data reported by Morgado et al. (2013a,b),
as for example, uncertainties regarding the real position of the thermocouples, the
temperature in the furnace during the tests and inefficient insulation of the lateral
faces of the profile.

In the thermomechanical simulations of unprotected and protected GFRP beams and
columns subjected to different fire scenarios, due to the lack of information in the lit-
erature, it was assumed that some of the mechanical properties of the GFRP, namely,
the elastic modulus in compression and the shear modulus present the same reduction
with temperature as the ultimate strength. All moduli were considered constant at each
temperature. Consequently, the material was modelled as linear and elastic. The CS
properties were assumed to be linear and temperature independent. The model presented
is not able to reproduce the failure of the beams and columns because the mechanical
properties of the material were assumed constant at each temperature and a failure crite-
rion was not implemented. The following main conclusions and remarks are drawn from
the thermomechanical modelling of the GFRP beams and columns:

• In the discussion about the spatial discretization required for the bars’ simulation
(carried out for the unprotected tubular GFRP beam with the bottom face exposed
to fire) several meshes were designed. It was concluded that no particularly refined
meshes are required to reproduce with accuracy the mechanical behaviour of the
beams. This conclusion was also applied in the mechanical modelling of the columns.

• In the study about the modelling of the bars’ extremities (unheated during the
experimental tests), it was concluded that the sections of the bars located outside
the furnace have to be modelled as cold. In these tests, a linear variation of the
temperature between the last section inside the furnace and the support was assumed
and this led to an important improvement in the accuracy of the numerical results.

• In all the simulations of the thermomechanical behaviour of GFRP beams, the model
was able to reproduce with reasonable accuracy the experimental evolution of the
vertical displacement at the midspan section for different load levels.

• In the simulations of the thermomechanical behaviour of the GFRP columns less
accurate results were obtained. In this case, the model was only able to repro-
duce with reasonable accuracy the experimental results obtained in the unprotected
GFRP tubular column subjected to fire in the bottom face. In the remaining cases,
the model revealed a qualitatively similar behaviour for all the columns: (i) during
the first instants, a slight axial expansion of the bar due to the temperature increase
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and a negative variation of the vertical displacement at the central section due to
the temperature gradient are observed; and (ii) subsequently, a contraction of the
column (positive axial shortening) and a positive variation of the vertical displace-
ment was determined for the model. However, the experimental results were often
different in magnitude and in sign. One reason for that could be the inadequacy of
the constitutive model employed to define the mechanical behaviour of the GFRP,
which influences the generalized stress field in columns.

The differences between the numerical and experimental results in the mechanical
response of GFRP beams and columns can be due to the following reasons: (i) the ac-
tual mechanical properties of the GFRP material may be different from those that were
assumed; (ii) the consideration of the thermal expansion coefficient of the GFRP as be-
ing constant and isotropic; this parameter was seen to have a significant influence in
the columns’ response; (iii) the difference encountered between the experimental and the
numerical temperature fields in the cross section; the linear temperature distribution as-
sumed along the unheated length can also be different from the actual temperature field;
(iv) the non-consideration of creep effects, which are deemed to have more influence in
the columns’ mechanical response; and (v) the adequacy of the boundary conditions con-
sidered in the clamped support of the columns, as in the experimental tests it was not
possible to entirely prevent the rotation of the cross section of the profile, thus allowing
small rotations to occur.

8.2 Future developments of the research

The present thesis presented an uncoupled FE model to evaluate the thermomechanical
behaviour of beams and columns subjected to elevated temperatures. The thermal model
consists of a two-dimensional FE formulation that allows solving conjugate heat transfer
problems following a coupled scheme. This constitutes a progress in the thermal modelling
of GFRP profiles when enclosed cavities are present as, in the literature, only simple mod-
els that evaluate the temperatures in the bottom flange of the profiles are available. In
fact, the present work shows the necessity of considering simultaneously the radiative heat
flux between the faces of the cavity and the natural convection in order to reproduce the
temperature in the cross section. However, the model developed presents a limitation: the
fluid is modelled as incompressible. Consequently, the effect of the temperature gradient
in the density could be miscalculated. Regarding the mechanical model, a FE code consid-
ering the geometrically exact beam theory was developed. This model allows computing
the mechanical behaviour of a bar considering the geometrical and material nonlinearities,
which could be significant in bars subjected to high temperatures.

For both thermal and mechanical properties of the materials involved in the simulation,
especially the GFRP, there were concerns regarding the adequacy of the values assumed.
Consequently, the following efforts should be developed in order to improve the quality of
the input data employed in the numerical simulations:

• Validation of the temperature-dependent thermal properties of the GFRP profiles
and the CS boards through experimental tests at high temperatures (if possible, up
to 1000◦ C).
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• Evaluation of the nonlinear axial stress-strain and shear stress-distortion curves of
the GFRP at elevated temperatures (higher than the decomposition temperature),
and for different types of loading (tension, compression and shear).

• Evaluation of the temperature-dependent thermal expansion coefficient for both
GFRP and CS.

The numerical results presented in the previous chapters lead to the following steps in
the future research in order to improve the thermal code:

• Elimination of the singularity in the sharp corners of the cavities, which affects the
results obtained in the temperature field. One option could be to model the curved
corners.

• Implementation of a thermochemical model to explicitly take into account the chem-
ical reactions that occur during the heating process of the material, as for example,
the endothermic reaction during the decomposition of the matrix.

• Consideration of the thermal properties of the fluid depending on the temperature,
thus eliminating the Boussinesq approximation. The most adequate model for future
developments is probably the one for low-speed compressible flows, which, as referred
in Reddy and Gartling (2010), should provide the most suitable equations to simulate
flows with significant variations in density and pressure and, hence, in temperature.

• Optimization of the algorithm implemented in order to allow reducing the time step
to the levels required and to complete the calculations until 3600 s with an acceptable
computational cost (in terms of time). This will require programming the FE code
in a compiled language, as for example, FORTRAN.

Finally, the following modifications are proposed to be developed in the thermome-
chanical model in order to improve the results reported:

• Study about the adequate constitutive model for the GFRP, considering the creep
effects, which may influence the mechanical behaviour, especially of columns (Dutta
and Hui, 2000).

• Implementation of an appropriate failure criterion for composite materials at high
temperatures as, for example, the Tsai-Hill criterion. This will also involve complex
experimental test and numerical efforts.

• Modelling the fixed support in the columns as a pinned support with a spring. This
action will allow some rotation in the support. However, this solution will introduce
a new unknown parameter: the rotational stiffness of the spring, that will have to
be defined based on experimental results.
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University of Lisbon, Lisbon, Portugal.

Correia, J.R., Y. Bai and T. Keller (2015). A review of the fire behaviour of pultruded
GFRP structural profiles for civil engineering applications. Composite Structures, 127,
267–287.

Correia, J.R., F.A. Branco and J.G. Ferreira (2010a). The effect of different passive fire
protection systems on the fire reaction properties of GFRP pultruded profiles for civil
construction. Composites Part A: Applied Science and Manufacturing, 41 (3), 441–452.

Correia, J.R., F.A. Branco, J.G. Ferreira, Y. Bai and T. Keller (2010b). Fire protection
systems for building floors made of pultruded GFRP profiles. Part 1: Experimental
investigations. Composites Part B: Engineering, 41, 617–629.

Correia, J.R., F.A. Branco and T.M. Morgado (2013a). Thermo-physical and thermome-
chanical experiments on GFRP and fire protection materials. Modelling of the mechan-
ical properties of the GFRP material at elevated temperature. Report IST-2-3. Project
Fire protection systems for glass fibre reinforced polymer (GFRP) pultruded profiles,
PTDC/ECM/100779/2008, ICIST.

Correia, J.R., M.M. Gomes, J.M. Pires and F.A. Branco (2013b). Mechanical behaviour
of pultruded glass fibre reinforced polymer composites at elevated temperature: Exper-
iments and model assessment. Composite Structures, 98, 303–313.

Cowper, G.R. (1973). Gaussian quadrature formulas for triangles. International Journal
for Numerical Methods in Engineering, 7 (3), 405–408.

Davies, J.M. and D.W. Dewhurst (1999). The fire performance of GRE pipes in empty and
dry, stagnant water filled, and flowing water filled condition. In Second International
Conference on Composites in Fire. Newcastle Upon Tyne.

De Vahl Davis, G. (1983). Natural convection of air in a square cavity: A benchmark
numerical solution. International Journal for Numerical Methods in Fluids, 3 (3), 249–
264.



234 Bibliography

Diersch, H.J.G. (2014). FEFLOW, Finite Element Modeling of Flow, Mass and Heat
Transport in Porous and Fractured Media. Springer-Verlag Berlin Heidelberg.

Dimitrienko, YU.I. (1995). Thermal stresses and heat-mass transfer in ablating composite
materials. International Journal of Heat and Mass Transfer, 38 (1), 139–146.

Dimitrienko, Yu.I. (1997). Thermomechanical behaviour of composite materials and struc-
tures under high temperatures: 1. Materials. Composites Part A: Applied Science and
Manufacturing, 28 (5), 453–461.

Dobrowolski, M. (2005). On the LBB condition in the numerical analysis of the Stokes
equations. Applied Numerical Mathematics, 54, 314–323.

Dodds, N., A.G. Gibson, D. Dewhurst and J.M. Davies (2000). Fire behaviour of composite
laminates. Composites Part A: Applied Science and Manufacturing, 31 (7), 689–702.

Donea, J. and A. Huerta (2003). Finite Element Methods for Flow Problems. John Wiley
& Sons, Ltd.

Dorfman, A. and Z. Renner (2009). Conjugate problems in convective heat transfer:
Review. Mathematical Problems in Engineering, 2009, 27 pages.

Drysdale, D. (Editor) (2011). An Introduction to Fire Dynamics. John Wiley & Sons,
United Kingdom, third edition.

Du, Z.-G. and E. Bilgen (1972). Coupling of wall conduction with natural convection
in a rectangular enclosure. International Journal of Heat and Mass Transfer, 35 (8),
1969–1975.

Dutta, P.H. and D. Hui (2000). Creep rupture of a GFRP composite at elevated temper-
atures. Computers & Structures, 76 (1–3), 153–161.
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Appendix A

Heat transfer problem

A.1 Weak form of the heat transfer equation

The weak form of the transient heat transfer equation is given by equation (3.24).
Integrating by parts the first term of the first member, one obtains,

−
∫

Ω
δθ div q dΩ = −

∫
Ω

∇ · (δθ q) dΩ +
∫

Ω
∇δθ · q dΩ (A.1)

and applying the divergence theorem1 in the first term of the second member:∫
Ω
δθ div q dΩ = −

∫
Γ
δθ qi ni dΓ +

∫
Ω

∇δθ · q dΩ =

= −
∫

Γ
δθ qn dΓ +

∫
Ω

∇δθ · q dΩ (A.3)

Since Γ = Γθ ∪ Γqn and Γqn = Γq ∪ Γh ∪ Γr ∪ ΓR, it is possible to write,∫
Γ
δθ qn dΓ =

∫
Γθ
δθ qn dΓθ +

∫
Γq
δθ qn dΓq +

∫
Γh
δθ qn dΓh +

∫
Γr
δθ qn dΓr +

∫
ΓR
δθ qn dΓR

(A.4)
where

∫
Γθ δθ qn dΓθ = 0 as δθ = 0 on Γθ.

Replacing the expressions (A.3) and (A.4) into the weak form (3.24), renders,

−
∫

Γ
δθ qn dΓ +

∫
Ω

∇δθ · q dΩ +
∫

Ω
δθ G dΩ−

∫
Ω
δθ ρ cp

∂θ

∂t
dΩ +

∫
Γq
δθ (qn + q) dΓq+

+
∫

Γh
δθ (qn + h (θa − θ)) dΓh +

∫
Γr
δθ
(
qn + ε σ

(
θ4
a − θ4

))
dΓr+

+
∫

ΓR
δθ

(
qn −

ε

1− ε
(
σ θ4 −R

))
dΓR = 0 (A.5)

where the terms regarding Γqn cancel and the final form of the weak equation, (3.25), is
obtained.

1The divergence theorem can be stated as follows:∫
Ω

div f dΩ =
∫

Γ
f · ndΓ⇔

∫
Ω

∂fi
∂xi

dΩ =
∫

Γ
fini dΓ (A.2)

where f is a vector function and n is the unit normal vector.
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A.2 Particularization of the weak form of the radiosity
equation to the 2D space

The equation that expresses the radiosities in a three-dimensional space is presented
in several publications, e.g., Bathe (1996), Bergheau and Fortunier (2008) or Reddy and
Gartling (2010), and it can be written as:

Re = σ εe (θe)4 + (1− εe)
n∑
k=1
k 6=e

∫
SkR

Rk
cosαe cosαk

π d2 dSkR (3.7)

The weak form of the previous equation is:∫
SeR

δRe
Re

(1− εe) dSeR =
∫
SeR

δRe σ
εe

(1− εe) (θe)4 dSeR+

+
n∑
k=1
k 6=e

∫
SeR

∫
SkR

δReRk
cosαe cosαk

π d2 dSkR dSeR
(3.26)

For the particular case of the 2D space, the differential surfaces may be evaluated
through:

dSeR = dΓeR dx3 (A.6a)
dSkR = dΓkR dx3 (A.6b)

Hence, replacing the previous result into equation (3.26), one obtains:∫
ΓeR

∫ h/2

−h/2
δRe

Re

(1− εe) dx3 dΓeR =
∫

ΓeR

∫ h/2

−h/2
δRe σ

εe

(1− εe) (θe)4 dx3 dΓeR+

+
n∑
k=1
k 6=e

∫
ΓeR

∫
ΓkR

∫ h/2

−h/2

∫ h/2

−h/2
δReRk

cosαe cosαk
π d2 dx3 dx3 dΓkR dΓeR

(A.7)

From figure 3.1, cosαe and cosαk are given by:

cosαe = ne · d
d

(A.8a)

cosαk = nk · −d
d

(A.8b)

where the vector d joins a point of the surface SRe to a point of the surface SRk . Therefore,
if xe is a point in SRe and xk is a point in SRk , their difference vector is d = xk−xe and,
the distance, d, between two points can be expressed as:

d2 =
(
xk1 − xe1

)2
+
(
xk2 − xe2

)2

︸ ︷︷ ︸
c2

+
(
xk3 − xe3

)2
(A.9)

Replacing equation (A.8) into (A.7), it is obtained:∫
ΓeR
δRe

Re

(1− εe) dΓeR =
∫

ΓeR
δRe σ

εe

(1− εe) (θe)4 dΓeR+

+
n∑
k=1
k 6=e

∫
ΓeR

∫
ΓkR
δReRk (ne · d)

(
−nk · d

) ∫ h/2

−h/2

∫ h/2

−h/2

1
π h d4 dx3 dx3 dΓkR dΓeR

(A.10)
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The weak form of the radiosity equation in the two-dimensional space can be obtained
determining the limit of the expression (A.10) when h→∞. This calculus was carried
out using Mathematica (Wolfram Research, 2010), rendering the following intermediate
results:

∫ h/2

−h/2

∫ h/2

−h/2

1
π h d4 dx3 dx3 dΓkR dΓeR =

−2 tan−1 ( c
h

)
+ 2 tan−1

(
h
c

)
+ π

4πc3 (A.11a)

lim
h→∞

−2 tan−1 ( c
h

)
+ 2 tan−1

(
h
c

)
+ π

4πc3 = 1
2 r3 (A.11b)

Hence, the weak form of the radiosity equation in a 2D space is,∫
ΓeR
δRe

Re

(1− εe) dΓeR =
∫

ΓeR
δRe σ

εe

(1− εe) (θe)4 dΓeR+

+
n∑
k=1
k 6=e

∫
ΓeR

∫
ΓkR
δReRk (ne · c)

(
−nk · c

) 1
2 r3 dΓkR dΓeR (A.12)

where:
c =

(
xk1 − xe1

)
e1 +

(
xk2 − xe2

)
e2 (A.13)

Considering that,

ne · c = c cosαe (A.14a)
nk · c = c cosαk (A.14b)

the previous expression (A.12) leads to (3.27), written in section 3.5.





Appendix B

Finite element method

B.1 Introduction to the finite element formulation

The finite element method involves the discretization of the domain and the governing
equations. In this process, a relation between the differential equations and the elements
is established by dividing the domain into a number of regions — finite elements —
and approximating the solution over these by suitable approximation functions — shape
functions. These functions are used to approximate the value field variables within an
element by interpolating the nodal values.

The strong form of the problem consists of the governing equations and the boundary
conditions for the physical problem. The weak form is an integral form of the strong form
and it is convenient to formulate the finite element method (FEM).

Generally, the FEM can be subdivided in the following six steps (adapted from Fish
and Belytschko, 2007):

1. Formulation of the strong form (governing equations and boundary conditions);

2. Calculation of the weak form;

3. Determination of the elemental equations (usually, this step requires the development
of the partial differential equations for the problem and its weak form, obtained by
replacing the approximation of the elemental unknowns on the elemental domain
using the shape functions);

4. Obtaining the global system of equations to solve by assembling the elemental ones;

5. Solving the equations;

6. Postprocessing the results to determine the quantities of interest, as for example,
heat flux in heat transfer problems.

In the case of transient problems, a two-stage procedure is usually employed: (i) a finite
element space discretization to transform the differential equations in a set of ordinary
differential equations in time, and (ii) a time discretization (commonly using the finite
difference method) to obtain the algebraic equations to solve.

Based on Reddy (2004a), three sources of error in a finite element solution are possible:

• the approximation of the domain, i.e., the spatial approximation,
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Figure B.1: Mapping of the Taylor-Hood elements and one-dimensional quadratic ele-
ment (adapted from Zienkiewicz et al., 2005b).

• the time discretization and,

• numerical computation, e.g. numerical integration.

B.2 Isoparametric elements and shape functions

In the present thesis, an isoparametric formulation is used to compute the shape func-
tions of the elements. One characteristic of these elements is that they are not restricted
to have straight sides and evenly spaced nodes. Hence, it is possible to solve practical
problems which have curved boundaries using a reduced number of elements with a conse-
quent reduction in the total number of variables in the system. The method used to create
the curved elements is mapping from isoparametric elements (natural coordinates, ξ1 and
ξ2) to regular elements (global coordinates, x1 and x2). Figure B.1 illustrates the mapping
of the Taylor–Hood elements and the 3-nodes one-dimensional element. Several specific
literature about this topic is available, as for example, the works of Bathe (1996), Hughes
(2000) or Zienkiewicz et al. (2005b).

In the present section the computation of the first and second order derivatives of the
shape functions with respect to the global coordinates is presented.
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Assuming that the shape functions are given by,

ψ(e) =
{
ψ1 ψ2 ... ψn

}
(B.1)

where each component ψi is function of (ξ1, ξ2).
The first derivatives of a generic component of the shape function vector with respect

to the global coordinates are: {
∂ψi
∂x1
∂ψi
∂x2

}
=
[
∂ξ1
∂x1

∂ξ2
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

]{
∂ψi
∂ξ1
∂ψi
∂ξ2

}
(B.2)

The matrix presented in expression (B.2) can be computed as the inverse of the Jacobian
matrix, which is given by:

J =
[
∂x1
∂ξ1

∂x1
∂ξ2

∂x2
∂ξ1

∂x2
∂ξ2

]
(B.3)

The components of the Jacobian matrix can be obtained explicitly in terms of natural
coordinates by deriving the parametric equations representing the elements geometry,

x1 = ψ(e) x(e)
1 (B.4a)

x2 = ψ(e) x(e)
2 (B.4b)

where x(e)
1 and x(e)

2 are respectively vectors that contain the horizontal and vertical coor-
dinates of the element nodes.

Consequently, the inverse of the Jacobian matrix is,[
∂ξ1
∂x1

∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x2

]
= J−1 ⇔ J−1 = 1

J

[
∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1

]
(B.5a)

J = det (J) = ∂x1
∂ξ1

∂x2
∂ξ2
− ∂x1
∂ξ2

∂x2
∂ξ1

(B.5b)

where J is the determinant of the Jacobian matrix.
Hence, the first derivatives of the shape function vector with respect to the natural

coordinate are required to compute the Jacobian matrix and, in the next sections, they
are given for each element, in the following form:

B(e) =
[
ψ1,1 ψ2,1 ... ψn,1
ψ1,2 ψ2,2 ... ψn,2

]
(B.6)

In order to compute the matrices C(e)t+∆t
SUPG and F(e)t+∆t

SUPG defined in equations (4.61),
the second derivatives of the shape function vector with respect to the global coordinates
have to be evaluated.

Similarly to (B.2), the second derivatives of each component of the shape function
vector can be computed as (Maia, 2011):


∂2ψi
∂x1

2

∂2ψi
∂x1∂x2
∂2ψi
∂x2

2

 =


∂2ξ1
∂x1

2
∂2ξ2
∂x1

2

(
∂ξ1
∂x1

)2
2 ∂ξ1
∂x1

∂ξ2
∂x1

(
∂ξ2
∂x1

)2

∂2ξ1
∂x1∂x2

∂2ξ2
∂x1∂x2

∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x1

∂ξ2
∂x2

+ ∂ξ1
∂x2

∂ξ2
∂x1

∂ξ2
∂x1

∂ξ2
∂x2

∂2ξ1
∂x2

2
∂2ξ2
∂x2

2

(
∂ξ1
∂x2

)2
2 ∂ξ1
∂x2

∂ξ2
∂x2

(
∂ξ2
∂x2

)2





∂ψi
∂ξ1
∂ψi
∂ξ2
∂2ψi
∂ξ1

2

∂2ψi
∂ξ1∂ξ2
∂2ψi
∂ξ2

2


(B.7)
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To evaluate the expression (B.7), the second derivatives of the natural coordinates
with respect to the global ones have to be obtained. As it was done with the first order
derivatives, the second derivatives can be computed using the definition of the Jacobian
matrix and are given by (Maia, 2011):


∂2ξ1
∂x1

2

∂2ξ2
∂x1

2

 = 1
J3

[
∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1

]−
∂2x1
∂ξ1

2

(
∂x2
∂ξ2

)2
+ 2 ∂2x1

∂ξ1∂ξ2
∂x2
∂ξ1

∂x2
∂ξ2
− ∂2x1

∂ξ2
2

(
∂x2
∂ξ1

)2

−∂2x2
∂ξ1

2

(
∂x2
∂ξ2

)2
+ 2 ∂2x2

∂ξ1∂ξ2
∂x2
∂ξ1

∂x2
∂ξ2
− ∂2x2

∂ξ2
2

(
∂x2
∂ξ1

)2

 (B.8a)

{
∂2ξ1
∂x1∂x2
∂2ξ2
∂x1∂x2

}
= 1
J3

[
∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1

]
∂2x1
∂ξ1

2
∂x2
∂ξ2

∂x1
∂ξ2
− ∂2x1

∂ξ1∂ξ2

(
∂x2
∂ξ1

∂x1
∂ξ2

+ ∂x2
∂ξ2

∂x1
∂ξ1

)
+ ∂2x1

∂ξ2
2
∂x2
∂ξ1

∂x1
∂ξ1

∂2x2
∂ξ1

2
∂x2
∂ξ2

∂x1
∂ξ2
− ∂2x2

∂ξ1∂ξ2

(
∂x2
∂ξ1

∂x1
∂ξ2

+ ∂x2
∂ξ2

∂x1
∂ξ1

)
+ ∂2x2

∂ξ2
2
∂x2
∂ξ1

∂x1
∂ξ1


(B.8b)

∂2ξ1
∂x2

2

∂2ξ2
∂x2

2

 = 1
J3

[
∂x2
∂ξ2

−∂x1
∂ξ2

−∂x2
∂ξ1

∂x1
∂ξ1

]−
∂2x1
∂ξ1

2

(
∂x1
∂ξ2

)2
+ 2 ∂2x1

∂ξ1∂ξ2
∂x1
∂ξ1

∂x1
∂ξ2
− ∂2x1

∂ξ2
2

(
∂x1
∂ξ1

)2

−∂2x2
∂ξ1

2

(
∂x1
∂ξ2

)2
+ 2 ∂2x2

∂ξ1∂ξ2
∂x1
∂ξ1

∂x1
∂ξ2
− ∂2x2

∂ξ2
2

(
∂x1
∂ξ1

)2

 (B.8c)

The second derivatives of the shape function vector with respect to the natural coordinates
are also required. Hence, in the next sections they are presented, for each element, in the
following form:

C(e) =

ψ1,11 ψ2,11 ... ψn,11
ψ1,12 ψ2,12 ... ψn,12
ψ1,22 ψ2,22 ... ψn,22

 (B.9)

B.2.1 Two-dimensional 3-nodes element

ψ(e) =


−ξ1 − ξ2 + 1

ξ1
ξ2


T

B(e) =
[
−1 1 0
−1 0 1

]
; C(e) =

0 0 0
0 0 0
0 0 0


B.2.2 Two-dimensional 6-nodes element

ψ(e) =



(−1 + ξ2 + ξ1) (−1 + 2 ξ2 + 2 ξ1)
ξ1 (−1 + 2 ξ1)
ξ2 (−1 + 2 ξ2)

−4 ξ1 (−1 + ξ2 + ξ1)
4 ξ2 ξ1

−4 ξ2 (−1 + ξ2 + ξ1)



T

B(e) =



−3 + 4 ξ2 + 4 ξ1 −3 + 4 ξ2 + 4 ξ1
−1 + 4 ξ1 0

0 −1 + 4 ξ2
−4 (−1 + ξ2 + 2 ξ1) −4 ξ1

4 ξ2 4 ξ1
−4 ξ2 −4 (−1 + 2 ξ2 + ξ1)



T

; C(e) =



4 4 4
4 0 0
0 0 4
−8 −4 0
0 4 0
0 −4 −8



T
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B.2.3 Two-dimensional 4-nodes element

ψ(e) =


1/4 (1− ξ1) (1− ξ2)
1/4 (1 + ξ1) (1− ξ2)
1/4 (1 + ξ1) (1 + ξ2)
1/4 (1− ξ1) (1 + ξ2)


T

B(e) =


1/4 (−1) (1− ξ2) 1/4 (1− ξ1) (−1)
1/4 (1) (1− ξ2) 1/4 (1 + ξ1) (−1)
1/4 (1) (1 + ξ2) 1/4 (1 + ξ1) (1)

1/4 (−1) (1 + ξ2) 1/4 (1− ξ1) (1)


T

; C(e) =


0 1/4 0
0 −1/4 0
0 1/4 0
0 −1/4 0


T

B.2.4 Two-dimensional 9-nodes element

ψ(e) =



((−1 + ξ2) ξ2 (−1 + ξ1) ξ1) /4
((−1 + ξ2) ξ2 ξ1 (1 + ξ1)) /4
(ξ2 (1 + ξ2) ξ1 (1 + ξ1)) /4

(ξ2 (1 + ξ2) (−1 + ξ1) ξ1) /4
−
(
(−1 + ξ2) ξ2

(
−1 + ξ2

1
))
/2

−
((
−1 + ξ2

2
)
ξ1 (1 + ξ1)

)
/2

−
(
ξ2 (1 + ξ2)

(
−1 + ξ2

1
))
/2

−
((
−1 + ξ2

2
)

(−1 + ξ1) ξ1
)
/2(

−1 + ξ2
2
) (
−1 + ξ2

1
)



T

B.3 Temporal discretization

The elemental transient residual vector involves a differential operator in time. There
are several time approximation schemes to discretize it, and some of them can be consulted
in the works of Reddy and Gartling (2010), Donea and Huerta (2003) and Lewis et al.
(2004). In this section, a particular application of the finite difference method (FDM) is
presented: the generalized trapezoidal family of methods.

A linear interpolation of the unknown vector, ut+∆t, can be done as a function of the
parameter γ:

ut+γ∆t = γ ut+∆t + (1− γ) ut (B.10)

The equation (B.10) can be differentiated in order to t to obtain:

∂ut+γ∆t

∂t
= γ

∂ut+∆t

∂t
+ (1− γ) ∂ut

∂t
(B.11)

The time derivative at the instant t+ γ∆t may be approximated by:

∂ut+γ∆t

∂t
' ut+∆t − ut

∆t (B.12)

Replacing equation (B.12) into (B.11), one obtains,

u̇t+∆t = 1
γ∆t

(
ut+∆t − ut − (1− γ) ∆t u̇t

)
(B.13)
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γ Type of the scheme Name of the scheme
0.0 Fully explicit Euler Forward difference method
0.5 Semi implicit Crank–Nicolson method
1.0 Fully implicit Euler Backward difference method

Table B.1: Time-stepping schemes (adapted from Lewis et al., 2004).

where:
u̇t = ∂ut

∂t
and u̇t+∆t = ∂ut+∆t

∂t
By varying the parameter γ, different transient schemes can be constructed, e.g., taking

γ = 0, γ = 0.5 and γ = 1, the fully explicit, semi-implicit and fully implicit schemes are
obtained, respectively (see table B.1).

It may be noticed that equation (B.13) cannot be directly used when γ = 0. In that
case, the aforementioned equation should be rewritten as:

γ∆t u̇t+∆t = ut+∆t − ut − (1− γ) ∆t u̇t (B.14)

The terms in the residual vector and tangent matrix where time derivatives occur should
be multiplied by γ∆t and approximated by expression (B.14).

The order of convergence of the presented scheme is linear for all the values of γ, except
for γ = 0.5, for which the convergence is quadratic.

The term u̇0 has to be evaluated from the assembled discrete system of equations at
the initial time, as indicated in Hughes (2000). Notice that the term u0 is known.

B.4 Gauss integration

In general, the integrals involved in the weak form of a problem cannot be solved
in closed form due to the complexity of the integrands. The finite element formulation
approximates the weak form in each element by using the shape functions, which in the
present thesis are polynomials. Over each element, the weak form is evaluated numerically
using the Gauss quadrature, which is valid in the parent domain. Hence, schematically,
the numerical integration process can be summarized as follows:

1. Definition of the integral in the elemental domain or boundary (Ω and Γ),

2. transformation of coordinates to evaluate the integral in the parent domain or bound-
ary,

3. application of the Gauss quadrature.

In the case of one-dimensional and quadrilateral elements, the Gauss–Legendre quadra-
ture was implemented. This method is based on the idea that, in a one dimensional-space,
given an appropriate finite number of points, nG, with coordinates (ξ1)i and its corre-
sponding weight factors, wi, the Gauss-Legendre quadrature allows to evaluate exactly
polynomials of degree equal or minor than (2nG + 1). The Gauss–Legendre formula for a
one-dimensional generic function f(x1) is given by,∫

Γ
f (x1) dΓ =

∫ 1

−1
f̂ (ξ1) dξ1 ≈

nG∑
i=1

f̂ ((ξ1)i) wi (B.15)
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nG p ξ1 w

1 1 0.0 2.0
2 3 ±1/

√
3 1.0

3 5 ±
√

3/
√

5 5/9
0.0 8/9

4 7 ±0.8611363116 0.3478548451
±0.3399810436 0.6521451549

Table B.2: Position of Gauss points and corresponding weights for the integration of
one-dimensional or quadrilateral regions (adapted from Fish and Belytschko, 2007).

where (ξ1)i are the based points and f̂ is the transformed integrand,

f̂ (ξ1) = f (x1 (ξ1)) J (ξ1) (B.16)

and J is the Jacobian of the transformation.
The Gauss–Legendre is one of the most efficient techniques to integrate polynomial

functions as it requires fewer based points than other techniques. Table B.2 summarizes
the position of the Gauss points and their corresponding weights for the first four rules,
being nG the number of Gauss points, p the maximum polynomial degree which can be
exactly integrated, ξ1 the coordinate of the Gauss point and w the corresponding weight
factor.

Considering the evaluation of the integral of a generic two-dimensional function, f(x1, x2),
one has,

∫
Ω
f(x1, x2) dΩ =

∫ 1

−1

∫ 1

−1
f̂ (ξ1, ξ2) dξ1 dξ2 ≈

nG∑
i=1

nG∑
j=1

f̂
(
(ξ1)i , (ξ2)j

)
wiwj (B.17)

where f̂ is the transformed integrand expressed by:

f̂ (ξ1, ξ2) = f (x1 (ξ1, ξ2) , x2 (ξ1, ξ2)) J (ξ1, ξ2) (B.18)

In the case of triangular elements, the Gauss quadrature formula employed is,

∫
Ω
f(x1, x2) dΩ =

∫ 1

0

∫ 1−ξ1

0
f̂ (ξ1, ξ2) dξ1 dξ2 ≈

nG∑
i=1

f̂ ((ξ1)i , (ξ2)i) wi (B.19)

where f̂ is the transformed integrand expressed by (B.18). As an example, table B.3
summarizes sampling points and weights required for integrating exactly polynomials of
1, 2 and 3 degree.

B.5 Global system of equations and global tangent matrix

The global system of equations to be solved is obtained by assembling the elemental
ones. It is a process where the elemental matrices and vectors are added in the appropriate
locations of the global matrices and vectors. The assembly of elements, in a general case,
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nG p ξ1 ξ2 w

1 1 1/3 1/3 1/2

3 2
1/2 0.0 1/6
1/2 1/2 1/6
0.0 1/2 1/6

4 3

1/3 1/3 −27/96
1/5 1/5 25/96
3/5 1/5 25/96
1/5 3/5 25/96

Table B.3: Position of Gauss points and corresponding weights for the integration in
triangular regions.

is based on the idea that the solution is continuous at the interelement boundaries and it
is subjected to boundary and/or initial conditions.

Following the notation of Hughes (2000), the assembly operation of the residual and
tangent matrix at (t+ ∆t) can be expressed respectively by,

rt+∆t =
m

A
e=1

r(e)t+∆t and Kt+∆t =
m

A
e=1

K(e)t+∆t (B.20)

where A is the finite element assembly operator and m is the total number of elements.

B.6 Newton–Raphson method

The Newton–Raphson method is an incremental/iterative numerical method to solve
nonlinear systems of equations. The problem consists of finding the unknowns at each
time step, ut+∆t, such that:

r
(
ut+∆t

)
= 0 (B.21)

The iterative process is carried out until the convergence of the solution — which
is evaluated through the convergence test — is attained. In the developed code, one
indicator of the convergence was considered: the dimensionless residual norm, computed
as the quotient between the norm of the residual vector and the norm of the initial residual
vector. The Euclidean norm was programmed. The convergence to the solution will be
attained when the indicator is equal or lower than a threshold value, εTOL, defined by the
user. In the present thesis, this value is set as 10−8.

In this method, the unknown vector correction is calculated from a first order Taylor
expansion series of the residual in the vicinity of the solution,

r
(
ut+∆t

)
∼= r

(
ut+∆t

)
i
+
∂r
(
ut+∆t

)
∂uT

∣∣∣∣∣∣
i

(
ut+∆t −

(
ut+∆t

)
i

)
(B.22)

where i refers to the iteration number. A linear approximation of the residual vector in
the vicinity of the solution is obtained and, in order to cancel it, equation (B.21) will
be considered. Hence, the iterative incremental nodal solution vector, δut+∆t, can be
computed from,

r
(
ut+∆t

)
i

= −
(
At+∆t

)
i
δut+∆t (B.23)
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where
(
At+∆t

)
i

is the tangent matrix at (t+ ∆t), given by,

(
At+∆t

)
i

=
∂r
(
ut+∆t

)
∂uT

∣∣∣∣∣∣
i

(B.24)

and:
δut+∆t = ut+∆t −

(
ut+∆t

)
i

(B.25)

The update of the iterative solution vector is expressed by:(
ut+∆t

)
i+1

=
(
ut+∆t

)
i
+ δut+∆t (B.26)

The Newton–Raphson method presents quadratic convergence of the iterative error in
the asymptotic limit of the solution.



Appendix C

Navier–Stokes problem

C.1 Navier–Stokes equations and weak form

The Navier–Stokes equations are a set of equations (momentum and mass-conservation
equations) that govern the time-dependent laminar flow of viscous, incompressible and
Newtonian fluids. The strong form of the problem is given by:

div v = 0 in Ω (C.1a)
v̇ + (∇v)v − ν∇2v + ∇p = b in Ω (C.1b)
v = v on Γv (C.1c)
t = t on Γt (C.1d)
v0 = v0 at t = t0 in Ω (C.1e)

The weak form of the Navier–Stokes equation is:

−
∫

Ω
δpdiv v dΩ = 0 (4.29b)∫

Ω
δv ·

(
v̇ + (∇v)v − ν∇2v + ∇p− b

)
dΩ+

+
∫

Γt
δv ·

(
(ν∇v − p I)n− t

)
dΓt = 0

(C.2a)

Integrating by parts and applying the divergence theorem to the forth and fifth terms
of the left part in expression (C.2a), it is obtained:∫

Ω
δv ·∇2v dΩ =

∫
Γ
δv · (∇v)ndΓ−

∫
Ω

∇δv : ∇v dΩ (C.3a)∫
Ω
δv ·∇p dΩ =

∫
Γ
δv · pndΓ−

∫
Ω

div δv p dΩ (C.3b)

Replacing (C.3) into (C.2a) and taking into account that Γ = Γv ∪ Γt and δv = o on
Γv, the final weak form of the problem is,∫

Ω
δv · v̇ dΩ +

∫
Ω
δv · (∇v)v dΩ +

∫
Ω

∇δv : ν∇v dΩ−

−
∫

Ω
div δv p dΩ−

∫
Γt
δv · t dΓt −

∫
Ω
δv · b dΩ = 0

(C.4)

which corresponds to the equation (4.29a), when the fluid is considered iso-thermal.
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260 Navier–Stokes problem

C.2 Ladyzhenskaya-Babǔska-Brezzi condition

Including the spatial discretization of the variables into the weak form, operating
similarly to section 4.6 and assembling the elemental matrices and vectors, the global
matrix system which governs the discrete Stokes problem assumes the form,[

Mv O
O O

] {
v̇
ṗ

}
+
[
Kv G
GT O

] {
v
p

}
=
{

fv
0

}
(C.5)

which, in the steady state regime, is expressed as:[
Kv G
GT O

] {
v
p

}
=
{

fv
0

}
(C.6)

Equation (C.6) presents an algebraic system of equations that contains a null submatrix
in the diagonal. From the first equation, one obtains,

Kv v + G p = fv (C.7)

and replacing it into the second equation, the pressure can be computed using the so called
Schur complement matrix: (

GT K−1
v G

)
p = GT K−1

v fv (C.8)

It can be demonstrated that, provided G such that its kernel1 is null, the pressure
matrix

(
GT K−1

v G
)

is positive definite (besides symmetric and full) and the global matrix
of system (C.6) is non-singular. Under these conditions, the existence and uniqueness of
the solution is guaranteed.

The Ladyzhenskaya-Babǔska-Brezzi (LBB) condition states that velocity and pressure
spaces cannot be chosen arbitrarily. The LBB condition, thus, is a sufficient compatibility
condition that continuous and discrete spaces of approximation of velocity and pressure
must satisfy to guarantee the stability of the solution (avoiding numerical oscillations in
the pressure field). Hence, the velocity-pressure pairs that satisfy the LBB condition,
allow obtaining a discrete gradient operator such that ker G = 0.

Following Donea and Huerta (2003), the LBB condition states that:

The existence of a stable finite element approximate solution (v, p) to the
steady Stokes problem depends on choosing a pair of spaces V and Q, such
that the following inf-sup condition holds,

inf
δp∈Q

sup
δv∈V

∫
Ω δp (div δv) dΩ
‖δp‖ ‖δv‖

≥ α > 0 (C.9)

where V and Q are the finite-dimensional spaces of functions for velocity and
pressure, respectively, and α is a constant independent of the mesh size.

An extensive discussion of the LBB condition is beyond the scope of this thesis. Further
information and details about the theory of mixed methods and LBB condition can be
consulted in Oden (1980), Brezzi and Fortin (1991), Chapelle and Bathe (1993), Peyret
(1996), Jiang (1998), Donea and Huerta (2003), Dobrowolski (2005) and Layton (2008).

1The kernel of a generic matrix, G, is the set of vectors, q, such that G q = 0.



Appendix D

Numerical results of the lid-driven
problem

In this appendix the numerical results obtained for the lid-driven cavity for Re = 100,
Re = 1000 and Re = 5000 are presented. Nonlinear transient analyses were carried
out until the steady state solution of the problem was reached. Due to the increasing
complexity of the problems performed for higher Reynolds number, different adaptive
meshes had to be generated. P2P1 elements were employed in all the analyses.

Tables D.1 and D.2 report the velocities obtained with the in-house code using non-
uniform meshes of 40×40 and 16×16 P2P1 elements, respectively. Table D.3 summarizes
the results presented in Ghia et al. (1982) and table D.4 lists those reported in Erturk
et al. (2005). Figure D.1 graphically represents the numerical results obtained with the
implemented code and the numerical solution of the referenced papers. It can be observed
that the solution of the problem when Re = 5000 and meshes of 16 × 16 P2P1 elements
are used is not represented as convergence was not attained.

Vertical velocity along x1 = 0.5 m Horizontal velocity along x2 = 0.5 m

x2 (m) Re
x1 (m) Re

1000 5000 1000 5000
0 0 0 0 0 0

0.003429 0.024285 0.054178 0.003429 0.024285 0.054178
0.006859 0.047328 0.103913 0.006859 0.047328 0.103913
0.010288 0.069131 0.148388 0.010288 0.069131 0.148388
0.013717 0.089715 0.187491 0.013717 0.089715 0.187491
0.017147 0.109076 0.220639 0.017147 0.109076 0.220639
0.020576 0.127250 0.248759 0.020576 0.127250 0.248759
0.024005 0.144241 0.272025 0.024005 0.144241 0.272025
0.027435 0.160105 0.291752 0.027435 0.160105 0.291752
0.033981 0.187288 0.322245 0.033981 0.187288 0.322245
0.040527 0.210867 0.347017 0.040527 0.210867 0.347017
0.047073 0.231150 0.368163 0.047073 0.231150 0.368163

(Continued on next page)

Table D.1: Numerical results of the velocity computed using a 40× 40 nonuniform mesh
of P2P1 elements.
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262 Numerical results of the lid-driven problem

Vertical velocity along x1 = 0.5 m Horizontal velocity along x2 = 0.5 m

x2 (m) Re
x1 (m) Re

1000 5000 1000 5000
0.053619 0.248712 0.386042 0.053619 0.248712 0.386042
0.060165 0.263965 0.400153 0.060165 0.263965 0.400153
0.066711 0.277376 0.410734 0.066711 0.277376 0.410734
0.073257 0.289325 0.417074 0.073257 0.289325 0.417074
0.079803 0.300095 0.420354 0.079803 0.300095 0.420354
0.091386 0.316788 0.417480 0.091386 0.316788 0.417480
0.102968 0.330960 0.408425 0.102968 0.330960 0.408425
0.114550 0.342877 0.394980 0.114550 0.342877 0.394980
0.126133 0.352341 0.380797 0.126133 0.352341 0.380797
0.137715 0.359180 0.366568 0.137715 0.359180 0.366568
0.149298 0.363264 0.353338 0.149298 0.363264 0.353338
0.160880 0.364514 0.340225 0.160880 0.364514 0.340225
0.172462 0.363059 0.328404 0.172462 0.363059 0.328404
0.190448 0.355552 0.310104 0.190448 0.355552 0.310104
0.208433 0.342814 0.292484 0.208433 0.342814 0.292484
0.226419 0.326032 0.273891 0.226419 0.326032 0.273891
0.244404 0.306591 0.256261 0.244404 0.306591 0.256261
0.262389 0.285709 0.238482 0.262389 0.285709 0.238482
0.280375 0.264249 0.220894 0.280375 0.264249 0.220894
0.298360 0.242876 0.202769 0.298360 0.242876 0.202769
0.316346 0.221993 0.185481 0.316346 0.221993 0.185481
0.339303 0.196114 0.163863 0.339303 0.196114 0.163863
0.362259 0.170990 0.142046 0.362259 0.170990 0.142046
0.385216 0.146400 0.120143 0.385216 0.146400 0.120143
0.408173 0.122158 0.098617 0.408173 0.122158 0.098617
0.431130 0.098090 0.076714 0.431130 0.098090 0.076714
0.454086 0.074087 0.055121 0.454086 0.074087 0.055121
0.477043 0.050088 0.033482 0.477043 0.050088 0.033482
0.522957 0.001924 −0.009925 0.522957 0.001924 −0.009925
0.545914 −0.022294 −0.031569 0.545914 −0.022294 −0.031569
0.568870 −0.046639 −0.053227 0.568870 −0.046639 −0.053227
0.591827 −0.071203 −0.075143 0.591827 −0.071203 −0.075143
0.614784 −0.096030 −0.097573 0.614784 −0.096030 −0.097573
0.637741 −0.121099 −0.119970 0.637741 −0.121099 −0.119970
0.660697 −0.146354 −0.142131 0.660697 −0.146354 −0.142131
0.683654 −0.171924 −0.164694 0.683654 −0.171924 −0.164694
0.701640 −0.191969 −0.183381 0.701640 −0.191969 −0.183381
0.719625 −0.212069 −0.201982 0.719625 −0.212069 −0.201982
0.737611 −0.232033 −0.220340 0.737611 −0.232033 −0.220340
0.755596 −0.252096 −0.239142 0.755596 −0.252096 −0.239142
0.773581 −0.272572 −0.258654 0.773581 −0.272572 −0.258654
0.791567 −0.294049 −0.278191 0.791567 −0.294049 −0.278191

(Continued on next page)

Table D.1: Numerical results of the velocity computed using a 40× 40 nonuniform mesh
of P2P1 elements.
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Vertical velocity along x1 = 0.5 m Horizontal velocity along x2 = 0.5 m

x2 (m) Re
x1 (m) Re

1000 5000 1000 5000
0.809552 −0.318459 −0.297594 0.809552 −0.318459 −0.297594
0.827538 −0.347386 −0.317651 0.827538 −0.347386 −0.317651
0.839120 −0.369911 −0.330579 0.839120 −0.369911 −0.330579
0.850702 −0.395684 −0.344029 0.850702 −0.395684 −0.344029
0.862285 −0.424669 −0.357814 0.862285 −0.424669 −0.357814
0.873867 −0.455072 −0.371130 0.873867 −0.455072 −0.371130
0.885450 −0.483116 −0.384403 0.885450 −0.483116 −0.384403
0.897032 −0.505235 −0.396254 0.897032 −0.505235 −0.396254
0.908614 −0.512758 −0.409051 0.908614 −0.512758 −0.409051
0.920197 −0.502425 −0.426443 0.920197 −0.502425 −0.426443
0.926743 −0.485583 −0.443280 0.926743 −0.485583 −0.443280
0.933289 −0.461017 −0.464745 0.933289 −0.461017 −0.464745
0.939835 −0.428570 −0.492372 0.939835 −0.428570 −0.492372
0.946381 −0.389056 −0.521114 0.946381 −0.389056 −0.521114
0.952927 −0.343720 −0.540425 0.952927 −0.343720 −0.540425
0.959473 −0.293893 −0.543292 0.959473 −0.293893 −0.543292
0.966019 −0.241785 −0.509051 0.966019 −0.241785 −0.509051
0.972565 −0.188882 −0.440838 0.972565 −0.188882 −0.440838
0.975995 −0.161765 −0.389823 0.975995 −0.161765 −0.389823
0.979424 −0.135213 −0.331291 0.979424 −0.135213 −0.331291
0.982853 −0.109534 −0.268542 0.982853 −0.109534 −0.268542
0.986283 −0.084875 −0.204138 0.986283 −0.084875 −0.204138
0.989712 −0.061486 −0.142702 0.989712 −0.061486 −0.142702
0.993141 −0.039456 −0.086233 0.993141 −0.039456 −0.086233
0.996571 −0.018948 −0.038469 0.996571 −0.018948 −0.038469

1 0 0 1 0 0
(End of table)

Table D.1: Numerical results of the velocity computed using a 40× 40 nonuniform mesh
of P2P1 elements.
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x2 (m) Re

100 1000
0 0 0

0.005836 −0.004281 −0.018717
0.011673 −0.008455 −0.036683
0.021020 −0.014935 −0.063999
0.030366 −0.021180 −0.089732
0.045058 −0.030575 −0.126982
0.059750 −0.039527 −0.161807
0.082180 −0.052494 −0.211957
0.104610 −0.064820 −0.260346
0.137372 −0.082057 −0.322359
0.170135 −0.098772 −0.363139
0.215025 −0.121320 −0.359456
0.259914 −0.143563 −0.306063
0.316319 −0.170061 −0.247807
0.372723 −0.192769 −0.182685
0.436362 −0.206931 −0.124876
0.500000 −0.204657 −0.066996
0.563638 −0.178786 −0.002982
0.627277 −0.129285 0.061310
0.683681 −0.067523 0.127795
0.740086 0.009078 0.192123
0.784975 0.082845 0.251191
0.829865 0.176039 0.304342
0.862628 0.266026 0.339342
0.895390 0.385003 0.366685
0.917820 0.488076 0.381041
0.940250 0.609835 0.414455
0.954942 0.699303 0.468589
0.969634 0.794520 0.579686
0.978980 0.857347 0.687173
0.988327 0.920824 0.819573
0.994164 0.960563 0.909776

1 1 1
(a) Vertical velocity along x1 = 0.5 m.

x1 (m) Re

100 1000
0 0 0

0.005836 0.010460 0.037761
0.011673 0.020520 0.072438
0.021020 0.035807 0.121037
0.030366 0.050094 0.162252
0.045058 0.070588 0.210993
0.059750 0.088773 0.247140
0.082180 0.112385 0.284977
0.104610 0.131372 0.312492
0.137372 0.151954 0.340975
0.170135 0.165198 0.352167
0.215025 0.174042 0.329952
0.259914 0.173897 0.291705
0.316319 0.163518 0.226042
0.372723 0.142348 0.160967
0.436362 0.105468 0.092977
0.500000 0.053804 0.028701
0.563638 −0.011126 −0.037232
0.627277 −0.087577 −0.104262
0.683681 −0.154871 −0.170049
0.740086 −0.214297 −0.233179
0.784975 −0.240583 −0.280917
0.829865 −0.242943 −0.349012
0.862628 −0.224480 −0.422804
0.895390 −0.187979 −0.506854
0.917820 −0.155229 −0.495017
0.940250 −0.116092 −0.415867
0.954942 −0.088660 −0.315706
0.969634 −0.059953 −0.197075
0.978980 −0.041494 −0.129158
0.988327 −0.022964 −0.065500
0.994164 −0.011446 −0.030911

1 0 0
(b) Horizontal velocity along x2 = 0.5 m.

Table D.2: Numerical results of the velocity computed using a 16× 16 nonuniform mesh
of P2P1 elements.
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(a) v1 along x1 = 0.5 (Re = 1000).
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(b) v1 along x1 = 0.5 (Re = 5000).
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(c) v2 along x2 = 0.5 (Re = 1000).
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(d) v2 along x2 = 0.5 (Re = 5000).

Figure D.1: Vertical and horizontal velocity distributions in the lid-driven problem.
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x2 (m) Re

100 1000 5000
1 1 1 1

0.9766 0.84123 0.65928 0.48223
0.9688 0.78871 0.57492 0.4612
0.9609 0.73722 0.51117 0.45992
0.9531 0.68717 0.46604 0.46036
0.8516 0.23151 0.33304 0.33556
0.7344 0.00332 0.18719 0.20087
0.6172 −0.13641 0.05702 0.08183

0.5 −0.205810 −0.0608 −0.03039
0.4531 −0.2109 −0.10648 −0.07404
0.2813 −0.15662 −0.27805 −0.22855
0.1719 −0.1015 −0.438289 −0.3305
0.1016 −0.06434 −0.2973 −0.40435
0.0703 −0.04775 −0.2222 −0.43643
0.0625 −0.04192 −0.20196 −0.42901
0.0547 −0.03717 −0.18109 −0.41165

0 0 0 0
(a) Vertical velocity along x1 = 0.5 m.

x1 (m) Re

100 1000 5000
1 0 0 0

0.9688 −0.05906 −0.21388 −0.49774
0.9609 −0.07391 −0.27669 −0.55069
0.9531 −0.08864 −0.33714 −0.55408
0.9453 −0.10313 −0.39188 −0.52876
0.9063 −0.16914 −0.5155 −0.41442
0.8594 −0.22445 −0.42665 −0.36214
0.8047 −0.24533 −0.31966 −0.30018

0.5 0.05454 0.02526 0.00945
0.2344 0.17527 0.32235 0.2728
0.2266 0.17507 0.33075 0.28066
0.1563 0.16077 0.37095 0.35368
0.0938 0.12317 0.32627 0.4291
0.0781 0.1089 0.30353 0.43648
0.0703 0.10091 0.29012 0.43329
0.0625 0.09233 0.27485 0.42447

0 0 0 0
(b) Horizontal velocity along x2 = 0.5 m.

Table D.3: Numerical results of the velocity obtained by Ghia et al. (1982).
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x2 (m) Re

1000 5000
1 1 1

0.99 0.8486 0.6866
0.98 0.7065 0.5159
0.97 0.5917 0.4749
0.96 0.5102 0.4739
0.95 0.4582 0.4738
0.94 0.4276 0.4683
0.93 0.4101 0.4582
0.92 0.3993 0.4452
0.91 0.3913 0.4307
0.9 0.3838 0.4155
0.5 −0.062 −0.0319
0.2 −0.3756 −0.31
0.18 −0.3869 −0.3285
0.16 −0.3854 −0.3467
0.14 −0.369 −0.3652
0.12 −0.3381 −0.3876
0.1 −0.296 −0.4168
0.08 −0.2472 −0.4419
0.06 −0.1951 −0.4272
0.04 −0.1392 −0.348
0.02 −0.0757 −0.2223

0 0 0
(a) Vertical velocity along x1 = 0.5 m.

x1 (m) Re

1000 5000
1 0 0

0.985 −0.0973 −0.2441
0.97 −0.2173 −0.5019
0.955 −0.34 −0.57
0.94 −0.4417 −0.5139
0.925 −0.5052 −0.4595
0.91 −0.5263 −0.4318
0.895 −0.5132 −0.4147
0.88 −0.4803 −0.3982
0.865 −0.4407 −0.3806
0.85 −0.4028 −0.3624
0.5 0.0258 0.0117
0.15 0.3756 0.3699
0.135 0.3705 0.3878
0.12 0.3605 0.407
0.105 0.346 0.426
0.09 0.3273 0.4403
0.075 0.3041 0.4426
0.06 0.2746 0.4258
0.045 0.2349 0.3868
0.03 0.1792 0.3263
0.015 0.1019 0.216

0 0 0
(b) Horizontal velocity along
x2 = 0.5 m.

Table D.4: Numerical results of the velocity reported in Erturk et al. (2005).





Appendix E

Differentially heated square cavity

In this appendix the numerical values of velocity and temperature of the differentially
heated square cavity problem are presented, considering different Rayleigh numbers (103,
104 and 105). Due to the complexity of the problems, two regular meshes with Q2Q1
elements are used: (i) 8× 8 and (ii) 32× 32 elements.

The geometry and the boundary conditions of the problem are illustrated in figure E.1.
The value of the constants considered is reported in table E.11.

The reference results are reported in Betts and Haroutunian (1983) and summarized
in table E.2. Table E.3 provides the numerical results obtained with a mesh of 8 × 8
elements. The numerical results obtained with the 32 × 32 mesh are only presented in
graphical mode, as they are too extensive. Figures E.2, E.3 and E.4 compare the numerical
results computed with both meshes versus the reference values. The mesh with 32 × 32
elements presents good agreement with the reference results. However, the representation
of the solution provided by the 8× 8 elements mesh clearly deteriorates for increasing Ra
number. At first, these limitations are only perceptible in the velocity fields, but they are
gradually extended to the temperature field as well.

1

1

x1

x2

v = o

v = o

v = o

p = 0

v = o
q = 0

θ = 1 θ = 0

q = 0

Ra ν β

103 0.71 71
104 0.71 710
105 0.71 7100

Figure E.1: Geometry and bound-
ary conditions.

Table E.1: Constants values for the
different analyses carried out.

1The reader should notice that the data used in this appendix is different than the one employed in
section 4.11.6, even if the problem is the same.
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x2 (m) Ra = 103 Ra = 104 Ra = 105

v1 v2 θ v1 v2 θ v1 v2 θ

0.00 0 0 1 0 0 1 0 0 1
0.05 0.030 2.001 0.943 0.400 14.100 0.880 0.675 65.910 0.772
0.10 0.094 3.139 0.887 1.054 19.290 0.766 0.525 59.060 0.594
0.15 0.149 3.633 0.832 1.215 18.890 0.667 −2.735 33.430 0.500
0.20 0.182 3.666 0.778 0.912 15.840 0.592 −5.256 13.790 0.471
0.25 0.189 3.375 0.726 0.409 12.050 0.541 −6.133 3.644 0.473
0.30 0.173 2.874 0.677 −0.051 8.605 0.512 −5.735 −0.332 0.481
0.35 0.141 2.240 0.630 −0.334 5.771 0.498 −4.677 −1.355 0.489
0.40 0.098 1.527 0.585 −0.380 3.514 0.494 −3.256 −1.224 0.495
0.45 0.050 0.773 0.542 −0.240 1.659 0.496 −1.664 −0.655 0.498
0.50 0 0 0.5 0 0 0.5 0 0 0.5

(a) Results along the line x1 = 0.5 m.

x1 (m) Ra = 103 Ra = 104 Ra = 105

v1 v2 θ v1 v2 θ v1 v2 θ

1.00 0 0 0.634 0 0 0.784 0 0 0.812
0.95 1.901 0.012 0.635 8.599 −0.146 0.783 19.830 −1.386 0.810
0.90 3.021 0.040 0.635 13.670 −0.441 0.777 31.460 −4.380 0.801
0.85 3.549 0.074 0.632 15.910 −0.681 0.762 34.670 −7.207 0.782
0.80 3.639 0.105 0.624 16.010 −0.809 0.737 31.280 −8.642 0.756
0.75 3.409 0.127 0.612 14.630 −0.839 0.704 24.600 −8.614 0.725
0.70 2.951 0.132 0.596 12.340 −0.786 0.666 17.410 −7.378 0.689
0.65 2.334 0.120 0.575 9.507 −0.663 0.625 11.210 −5.519 0.649
0.60 1.610 0.091 0.552 6.420 −0.483 0.584 6.507 −3.553 0.603
0.55 0.821 0.049 0.526 3.225 −0.255 0.542 2.955 −1.718 0.553
0.50 0 0 0.5 0 0 0.5 0 0 0.5

(b) Results along the line x2 = 0.5 m.
Table E.2: Numerical results of the velocity and temperature reported in Betts and
Haroutunian (1983).
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x2 (m) Ra = 103 Ra = 104 Ra = 105

v1 v2 θ v1 v2 θ v1 v2 θ

0 0 0 1 0 0 1 0 0 1
0.0625 0.047 2.174 0.929 0.682 14.463 0.851 1.968 58.351 0.729
0.1250 0.124 3.478 0.859 1.117 20.167 0.714 −1.734 55.146 0.528
0.1875 0.182 3.725 0.791 1.271 17.305 0.607 −3.193 22.005 0.456
0.2500 0.187 3.408 0.726 0.527 12.480 0.538 −4.936 5.774 0.450
0.3125 0.171 2.757 0.665 −0.101 8.112 0.503 −6.700 −0.090 0.461
0.3750 0.119 1.917 0.607 −0.351 4.757 0.490 −5.115 −1.309 0.472
0.4375 0.063 0.986 0.553 −0.344 2.189 0.489 −2.830 −0.976 0.478
0.5000 0.000 0.018 0.500 −0.059 0.037 0.495 −0.565 −0.222 0.482
0.5625 −0.064 −0.950 0.447 0.237 −2.097 0.500 1.716 0.572 0.486
0.6250 −0.118 −1.879 0.392 0.284 −4.607 0.500 4.061 1.027 0.492
0.6875 −0.169 −2.717 0.335 0.094 −7.858 0.488 5.788 0.131 0.501
0.7500 −0.185 −3.367 0.274 −0.454 −12.072 0.454 5.030 −4.627 0.511
0.8125 −0.180 −3.686 0.209 −1.140 −16.730 0.387 3.931 −17.979 0.507
0.8750 −0.122 −3.448 0.141 −1.011 −19.558 0.284 2.432 −45.427 0.445
0.9375 −0.046 −2.352 0.071 −0.631 −15.991 0.148 −1.190 −67.250 0.264

1 0 0 0 0 0 0 0 0 0
(a) Results along the line x1 = 0.5 m.

x1 (m) Ra = 103 Ra = 104 Ra = 105

v1 v2 θ v1 v2 θ v1 v2 θ

0 0 0 0.366 0 0 0.215 0 0 0.191
0.0625 −2.239 −0.016 0.365 −10.165 0.231 0.217 −23.010 2.148 0.194
0.1250 −3.337 −0.052 0.366 −15.097 0.512 0.228 −33.832 4.604 0.210
0.1875 −3.638 −0.090 0.374 −16.123 0.829 0.255 −32.655 8.243 0.238
0.2500 −3.395 −0.123 0.388 −14.608 0.754 0.294 −24.715 8.573 0.275
0.3125 −2.798 −0.116 0.409 −11.682 0.797 0.341 −15.713 7.000 0.317
0.3750 −1.974 −0.096 0.436 −8.012 0.574 0.392 −8.587 4.265 0.366
0.4375 −1.018 −0.043 0.467 −4.082 0.349 0.443 −3.848 2.234 0.422
0.5000 0.000 0.018 0.500 −0.059 0.037 0.495 −0.565 −0.222 0.482
0.5625 1.017 0.077 0.532 3.974 −0.273 0.546 2.649 −2.831 0.542
0.6250 1.973 0.128 0.563 7.932 −0.505 0.598 7.355 −5.055 0.596
0.6875 2.798 0.143 0.590 11.645 −0.735 0.648 14.736 −8.089 0.642
0.7500 3.395 0.144 0.611 14.621 −0.709 0.696 24.396 −10.135 0.682
0.8125 3.639 0.103 0.626 16.186 −0.814 0.736 33.138 −9.731 0.718
0.8750 3.337 0.059 0.633 15.196 −0.511 0.763 34.835 −5.500 0.748
0.9375 2.240 0.018 0.634 10.255 −0.236 0.775 23.716 −2.517 0.765

1 0 0 0.633 0 0 0.776 0 0 0.769
(b) Results along the line x2 = 0.5 m.

Table E.3: Numerical results of the velocity and temperature obtained using a 8× 8 mesh
of Q2Q1 elements.
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(a) Horizontal velocity along x1 = 0.5.
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(b) Horizontal velocity along x2 = 0.5.
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(c) Vertical velocity along x1 = 0.5.
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(d) Vertical velocity along x2 = 0.5.
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(e) Temperature along x1 = 0.5.
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(f) Temperature along x2 = 0.5.

Figure E.2: Numerical results of vertical and horizontal velocities and temperature along
the lines x1 = 0.5 and x2 = 0.5 when Ra = 103.
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(a) Horizontal velocity along x1 = 0.5.
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(b) Horizontal velocity along x2 = 0.5.
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(c) Vertical velocity along x1 = 0.5.
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(d) Vertical velocity along x2 = 0.5.
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(e) Temperature along x1 = 0.5.
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(f) Temperature along x2 = 0.5.

Figure E.3: Numerical results of vertical and horizontal velocities and temperature along
the lines x1 = 0.5 and x2 = 0.5 when Ra = 104.
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(a) Horizontal velocity along x1 = 0.5.
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(b) Horizontal velocity along x2 = 0.5.
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(c) Vertical velocity along x1 = 0.5.
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(d) Vertical velocity along x2 = 0.5.
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(e) Temperature along x1 = 0.5.
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(f) Temperature along x2 = 0.5.

Figure E.4: Numerical results of vertical and horizontal velocities and temperature along
the lines x1 = 0.5 and x2 = 0.5 when Ra = 105.



Appendix F

Complete thermal response of the
unprotected tubular profile with
the bottom face subjected to fire

This appendix reports the complete thermal response of the unprotected tubular profile
subjected to fire in the bottom face. These results were obtained by Paipuri (2016), who
implemented the equations reported in the present thesis in FORTRAN, in order to reduce
the CPU time required for the calculations. The adaptive time step scheme described in
section 5.3.3 was also implemented.

The results were obtained using the boundary conditions reported in section 7.4.2,
model (iv) and using the thermo-physical properties of the GFRP evaluated by Tracy
(2005).

Figure F.1 depicts the evolution of the time step size as a function of time. The
maximum and minimum time step sizes are 66.60486 s and 0.00122 s, respectively.

Figure F.2 illustrates the evolution of the maximum elemental Courant number along
the computational time. Two peak values can be identified: (i) at 624.58 s and (ii) at
1005.5 s. Both the peak values are associated to the formation of vortices in the lower
corners of the cavity: at 624.58 s the vortices appear and at 1005.5 s the vortices develop
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Figure F.1: Variable time step size along time (data from Paipuri, 2016).
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Figure F.2: Courant number evolution along time (data from Paipuri, 2016).

(a) Velocity field at t = 669 s. (b) Velocity field at t = 1064 s.

Figure F.3: Velocity field in the cavity (data from Paipuri, 2016).

and the Bénard cells separate from the bottom of the cavity, and the fluid flow loses its
symmetry. Figure F.3 depicts the velocity magnitude in the cavity at 669 s and 1064 s,
where both phenomena previously stated can be recognized.

After 1005.5 s (the Cu number is 6770.5, this value being the maximum), a sudden
reduction of the Cu numbers is observed. This is attributed to the complexity (and high
nonlinearity) of the flux in the cavity, which starts being asymmetric. The minimum Cu
number calculated after this time is approximately 4.739. Figure F.4 shows the velocity
field at 3600 s.

The results depicted in figures F.6b and F.4 indicate that the mesh employed is too
coarse to represent accurately (and continuously) the velocity magnitude, the mesh being
visible in the results. This is relevant in the vicinities of the walls of the cavity, where
elevated velocity gradients are expected.

By comparing figure F.1 and figure F.2, the influence of the time step size in the Cu
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Figure F.4: Velocity field at t = 3600 s (data from Paipuri, 2016).
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Figure F.5: Courant number evolution along time.

number can be clearly observed, as both the graphics present almost the same shape.
Figure F.5 depicts the evolution of the maximum elemental Courant number along the

time, when a constant time step equal to 1 s is considered (the description of the analysis
can be consulted in section 7.5.2). Between 0 and 400 s, the Cu number increases from 0
to 100. For these initial computational times, higher time step sizes could be employed,
as the Cu number remains relatively low. After 400 s and until 1000 s, the Cu number
is approximately equal to 100 for all the time steps. This Cu number is high, but the
algorithm implemented is still able to evaluate a converged solution. After 1000 s, the
Cu number continues increasing, attaining a value of 106 at the last time step computed.
After this instant, the algorithm implemented requires a smaller time step size in order to
compute a converged solution.

The Courant numbers obtained when using a constant time step and a variable time
step are significantly different, as the Cu numbers obtained with the time step variable
are the maximum Cu numbers that can be used to obtain a converged solution.
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(a) Temperature field at t = 1800 s. (b) temperature field at t = 3600 s.

Figure F.6: Temperature field in the squared tubular cross section (data from Paipuri,
2016).

The complete thermal response was also obtained by Paipuri (2016). Figure F.7 shows
the temperature field in the solid and fluid domain at 1800 s and 3600 s. Figure F.7
depicts the numerical and experimental temperatures obtained along the time in the seven
thermocouples installed in the cross section.
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(a) Thermocouple T1.
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(b) Thermocouple T2.
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(c) Thermocouple T3.
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(d) Thermocouples T4 and T5.
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(e) Thermocouple T6.
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(f) Thermocouple T7.

Figure F.7: Experimental and numerical temperatures in the unprotected tubular cross
section with 1-face exposure (data from Paipuri, 2016).





Appendix G

Modelling of the tubular protected
profile with the bottom face
subjected to fire

In the present appendix, the numerical results obtained in the simulation of the thermal
behaviour of a protected tubular GFRP profile subjected to fire in the bottom face is
presented. In the simulation, the bottom and top faces are modelled as being subjected to
a radiative and convective heat transfer with the ambient, the lateral faces are modelled
as insulated and, in the cavity, only radiative exchange between the faces is considered.
The boundary conditions defined are schematized in figure G.1. The mesh used is that
presented in 7.34 in section 7.5.4.

x2

x1

convective and radiative flux

q = 0

convective and radiative flux
θa = 20

θa = θISO

q = 0

radiative heat
exchange

Figure G.1: Thermal boundary conditions prescribed in the protected GFRP cross section,
with the bottom face subjected to fire.

A nonlinear transient analysis was carried out with a time step of 10 s. The results
obtained are depicted in figure G.2. It can be observed that the numerical results are
lower than the experimental ones in all the thermocouples, the relative difference between
them being very high. Consequently, the model presented does not reproduce correctly
the thermal behaviour of the protected tubular profile subjected to fire in the bottom
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face. This conclusion points out the necessity of considering simultaneously the radiative
exchange and the natural convection in the cavity.
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(a) Top flange.
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(b) Web.

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

450

Time, t (minutes)

T
em

p
er
at
u
re
,
θ
(◦
C
)

 

 
T7exp

T8exp

T9exp

T10exp

T11exp

T7num

T8num

T9num

T10num

T11num

(c) Bottom flange.

Figure G.2: Tubular protected cross section with 1-face exposure when only radiative heat
transfer in the cavity is considered.



Appendix H

Numerical results of the
thermomechanical simulation of
columns

The mechanical performance of the protected tubular and unprotected/protected I-
section columns, all exposed to fire in 3-faces, are displayed in figures H.1, H.2 and H.3,
respectively.

The experimental results presented in figure H.1 indicate that the column presents a
positive variation of the vertical deflection at midspan and axial shortening during all the
test.
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(a) Variation of the vertical displacement.
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(b) Variation of the axial shortening.

Figure H.1: Protected tubular column subjected to fire in 3-faces (55 kN).

The variation of the central section vertical deflection observed in the test has very
low magnitude and presents a non-monotonic trend. The numerical results obtained were
only able to simulate the mechanical behaviour of the column during the first 10 minutes.
During this period, the variation of the vertical deflection at the central section is neg-
ative and the axial shortening is positive, but both are lower than the results measured
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experimentally, particularly the axial shortening.
The structural response of the GFRP I-section column subjected to fire in 3-faces

is illustrated in figure H.2. The experimental results indicate that the column suffers a
negative variation of the vertical displacement in the central section and a minor axial
shortening (the maximum value measured was −0.5 mm). These results are difficult to
interpret as the duration of the test was very short. Numerically, the column develops a
negative variation of the vertical displacement and a slight expansion due to the tempera-
ture increase (negative shortening), during the initial instants. Subsequently, the variation
of the vertical displacement augments progressively until attaining positive values. For
the axial shortening, the same effect can be observed, with the initial expansion changing
to contraction.
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Figure H.2: Unprotected I column subjected to fire in 3-faces (25 kN).
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(b) Variation of the axial shortening.

Figure H.3: Protected I column subjected to fire in 3-faces (25 kN).
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Figure H.3 displays the numerical and experimental results obtained for the protected
GFRP I-column exposed to fire in 3-faces. The experimental data reflect an axial short-
ening of the column (almost linear up to failure) with little variation of the vertical dis-
placement. The numerical simulation shows a different behaviour of the column, with the
variation of the vertical displacement being negative until approximately 13 minutes and
positive afterwards.
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